

$$
\begin{gathered}
\\
\ddots
\end{gathered}
$$

FIVE-YEAR CATALOGUE

of

258 FUNDAMENTAL STARS,

DEDUCED FROM

OBSERVATIONS

EXTENDING FROM 1887 TO 1891,

```
MADE AT THE
```


ROYAL OBSERVATORY, GREENWICH,

UNDER THE DIRECTION OF

WILLIAM HENRY MAHONEY CHRISTIE, M.A., F.R.S., ASTRONOMER ROYAL,

REDUCED TO THE EPUCH

$1890 \cdot 0$

(Forming Appendix to the Greenwich Observations for the Year 1891.)

GREENWICH FIVE-YEAR CATAL0GUE

of

258 FUNDAMENTAL STARS, DEDUCED FROM OBSERVATIONS EXTENDING FROM 1887 TO 1891, AND REDUCED TO THE EPOCH
1890.0 .

This Catalogne has been formed to supply revised places of Fundamental Stars, a vailable for determination of instrumental and clock errors, and for use in the Nautical Almanac, in the interval between two successive Greenwich General Catalogues, which it is proposed to form at intervals of ten years, so that a sufficient number of observations of each star may be accumulated. In the case of the Fundamental Stars, however, there are usually a sufficient number of observations in the course of five years to give trustworthy positions, and it has, therefore, been thought advisable, in view of possible uncertainty of proper motion when applied for more than ten years, to publish the present provisional Catalogue of Fimdamental Stars based on the five yeurs' observations 1887-1891, stren ${ }^{\text {rthened, where necessary, by combining with }}$ them the places of the Ten- Year Catalogue (1880.0).

The stars whose places are given in this Catalogue are-

1. Those contained in the Greenwich Clock Star Lists.
2. Circumpolar stars whose Ephemerides are published in the "Connaissance des Temps," or in the "Éphémérides des Étoiles de Culmination Lunaire et de Longitude, par M. M. Loewy."

3. Stars in the Nautical Almanae, but not in the Greenwich Clock Star Lists.

The following is the process of formation of the star places in this Catalogue.

I.-Fommation of Right Ascensions.

The determinations of Right Ascension of each star, which are to be combined in order to form the Right Ascensions in this Catalogue, are those given in the Annual Catalogues printed in the successive volumes of Greenwich Observations from 1887 to 1891.

The Right Ascensions of each Annual Catalogue depend essentially upon the Right Ascensions assumed for the stars whose transits are employed in each year to ascertain the errors of the Transit-Clock ; it is necessary, therefore, in the first instance to ascertain the amount of correction required for the assumed Right Ascensions of the Clock Stars. Now it appears from the discussions of the Observations for the l'osition of the Ecliptic in the Greenwich Observations 1887-1891, that the Right Ascensions of the Clock Stars used in those years require the following corrections:-

$$
\begin{array}{lll}
1887 & \ldots & -0.059 \\
1888 & \ldots & +0.072 \\
1889 & \ldots & +0.024 \\
1890 & \ldots & +0.092 \\
1891 & \ldots & +0.088
\end{array}
$$

The mean of these is +0.043 ; but it was considered advisable to wait for further information before making such a large correction to the Right Ascensions, and no correction for Epoch has therefore been applied to the Right Ascensions taken from the Greenwich Observations 1887 to 1891. The present Catalogue is thus referred to the Epoch of the Standard Right Ascensions of the Ten-Year Catalogue (1880.0) ; and also of the Ninc-Year Catalogue (1872.0); for it is shown on page 9 of the Introduction to the former, that the mean difference between the two sets of Standard Right Ascensions is only $0^{8.0001, ~ w h i c h ~ i s ~ p r a c t i c a l l y ~ i n s e n s i b l e . ~ I t ~ s h o u l d ~ b e ~}$ remarked that the Mean R.A.'s of Clock Stars used during 1887 and 1888 were taken from the Standard R.A.'s of the Nine-Year Catalogue ; during 1889, 1890, and 1891, from those of the Ten-Year Catalogue.

The results for the separate years as given in the Annual Catalogues were reduced to $1890 \cdot 0$ by using the elements given in the Ten-Year Catalogue, where Struve's Constant of Precession, and Prof. Auwers' Proper Motions are used. In the case of Sirius and Procyou, corrections for orbital motion deduced from Prof. Auwers' Papers (Publ. Astr. Gesellschaft, No. VII., and Astr. Nachr., Nos. 1373 and 3085) have been applied to the separate years in forming the Mean R.A. 1890.0.

A separate determination of the Right Ascensions of Clock Stars was made in which only those observations were included where the group of Clock Stars extended over 12 hours at least，in a similar manner precisely to that described in the Introductions to the Nine－Year and Ten－Year Catalogues，though the number of such groups is，of course，not so large．The excess of R．A．from the 12 －hour groups above that of the Five－Year Catalogue was tabulated for each star and the mean formed for each hour of R．A．by combining the individual excesses with weights $=\frac{m n}{m+n}$ ，where m and n are the numbers of observations in the Twelve－Hour Groups，and in the Catalogue respectively．Similarly the corrections to the R．A．＇s of the Five－Year Catalogue，as depending on the N．P．D．of the star，were formed for each 10° of N．P．D． Both sets of corrections are given in the following tables，the Resultant Corrections applicable to the R．A．＇s of the Five－Year Catalogue being the algebraic sums of the two．The mean of all the corrections is less than－s． 0005 ，and though it enters into both sets，no sensible error is thus introduced by adding the two sets together．

MEAN CORRECTIONS TO RIGHT ASCENSIONS OF FIVE－YEAR CATALOGUE， DERIVED FROM A COMPARISON WITH R．A．＇s OF 204 CLOCK STARS FROM 12－HOUR GROUPS．

$\begin{gathered} \text { Limits } \\ \text { of } \\ \text { R.A. } \end{gathered}$	Correction．	宫	$\begin{gathered} \text { Limits } \\ \text { of } \\ \text { R.A. } \end{gathered}$	Correction．	莒	$\begin{gathered} \text { Limits } \\ \text { of } \\ \text { R.A. } \end{gathered}$	Correction．	管	$\begin{aligned} & \text { Limits } \\ & \text { N.P. } \end{aligned}$	Correc－ tion．	淢
b b	＋．910＋．005			－．015＋．007					$50^{\circ}-60^{\circ}$		67
O－I	＋：010	48	8－9	－．015士．007	23	16－17	$+\cdot 005 \pm .007$	30	50－60	－．002	67
I－2	$-\cdot 007 \pm .005$	56	9－10	$-\cdot 009 \pm .008$	20	17－18	－．005士．005	44	60－70	＋．002	176
2－3	$-.002 \pm .005$	45	10－11	－．009士．007	26	18－19	－．001 $\pm .004$	63	$70-80$	． 000	192
3－4	－．005 $\pm .006$	33	11－12	＋．012 2.009	16	19－20	＋．002 $\pm .004$	68	80－90	－．003	221
4－5	－．001 $\pm .005$	47	12－13	＋．005士．008	20	20－21	＋．014 $\pm .006$	37	90－100	－．001	146
5－6	＋．010土．006	32	13－14	－．004士．005	46	$2 \mathrm{I}-22$	－．010士．006	36	100－110	－．001	80
6－7	＋．010 ${ }^{-006}$	35	14^{-15}	$-.005 \pm .006$	37	22－23	－000 $\pm .005$	53	110－124	＋．006	35
7－8	$-.011 \pm .006$	39	15－16	＋．002.$^{.006}$	32	23－24	＋．002 ${ }^{\circ}$	31			

The probable errors appended with the sign \pm have been computed by taking the probable error of a single determination of R．A．as $\pm .0^{9.034}$ ．

It appears that the errors of the assumed places of the Clock Stars，originally derived from Pond＇s Catalogue，have been greatly diminished and are now very small．

II．－Formation of Mean Norti Polar Distances．

The determinations of N．P．D．of each star，which are to be combined in order to form the N．P．D．in this Catalogue，are those given in the Annual Catalogues printed in the successive volumes of Greenwich Observations， 1887 to 1891 ，to which the sam
statements apply generally as lave been made for R.A., omitting all that relates to Correction for Equinox. The adopted colatitude is $38^{\circ} 31^{\prime} 21^{\prime \prime} 90$ throughout. The corrections required for orbital motion, in the case of Sirius and Procyon, have been deduced from Prof. Auwers' papers referred to before.
III.-Explanation of the Separate Columns of the Printed Catalogue.

The "No." is the ordinal number of this Catalogue, the stars being arranged in order of R.A. $1890 \cdot 0$.

The "Star's Name" is taken from one of the following authorities, the order of preference being the order of mention of the authority below :-

1. Flamsteed's Constellation No. and Constellation, with Bayer's Letter, taken from Baily's Edition of Flamsteed, or the British Association Catalogue.
2. The No. in Bessel's Fundamenta Astronomice deduced from Bradley's Obserrations, referred to as "Bradley."
3. The Hour and No. in Piazzi's Catalogue, Edition 1814.
4. The No. in Groombridge's Catalogue.

For Circumpolar Stars the result of observations below the pole is shown separately.
The "Magnitude" is taken from the Harvard Photometry for stars contained in that work, and for other stars (marked *) from the Bonn Durchmusterung. The magnitude in the Uranometria Nova (Oxoniensis is given in the Notes for all cases in which it differs by more than 0.2 magnitude from that in the Harvard Photometry. The magnitudes of the components of double stars, taken from Struve's Mensure Micrometrice or other authority, are given in the Notes. In the case of Variable Stars, the limits of magnitude and the period given in the Notes are taken from Mr. Chandler's Catalogue in the Astronomical Journal, Nos. 179, 180.

The next six columns consist of three pairs, the first of each pair referring to the observations in 1887-1891, immediately under discussion, and the second to the Ten-Year Catalogue.

The first pair gives the "Mean Date" expressed in years and decimals of a year reckoned from 1800.

The second pair (columns 6 and 7) gives the "Number of Observations," being the aggregate of all the observations in the different years, above and below the Pole respectively, in column 6, and the aggregate of all observations in column 7.

The third pair (columns 8 and 9) gives the seconds of Mean R.A. formed in the manner already described.

In forming the adopted Mean R.A. $1890 \cdot 0$ the following rules have been observed :-
(1.) In all cases where the total number of observations in the years 1887-1891 is ten or more, the mean of these observations is the adopted Mean R.A., equal weight being assigned to observations above and below the Pole.
(2.) When there are five to nine observations in the period 1887-1891, the adopted Mean R.A. is formed by combining these with the result brought up from the Ten-Year Catalogue, giving weight $\frac{1}{4}$ to each observation in the latter.
(3.) When there are less than five observations in the period 1887-1891, weight $\frac{1}{2}$ is given to each observation in the Ten-Year Catalogue in combining the two means.

Assmming that there are on the average twice as many observations of a star in the Ten-Year Catalogue as in the Five-Year Catalogue, this is equivalent to giving the Ten-Year Catalogue weight $\frac{1}{2}$ on the average when there are from five to nine observations in the Five-Year Catalogue, and to taking the simple mean between the Five-Year and Ten-Year (on the average) when there are less than five observations in the former. If we assume that the probable error of one observation of R.A. is $\pm 0^{8} 034$, and that the Ten-Year Catalogue deduced place for $1890^{\circ} 0$ is affected by a probable error of proper motion, or other systematic error represented by x, and express the condition that the result of seven observations in the Five- Year Catalogue should have double the weight of 14 observations in the Ten-Year Catalogne; then $x= \pm{ }^{\mathrm{s}} .016$; or the method of combination adopted is equivalent to assuming that the results of the Ten-Year Catalogue reduced to $1890 \cdot 0$ are affected by a probable error of proper motion or other systematic error amounting to $\pm 0^{s} 016$.

The "Annual Precession 1890.0 " for stars beyond 5° from the Pole has been formed by applying to the Precession in the Ten-Year. Catalogue the proportional part of the "Secular Variation 1880.0 " to reduce it to $1890 \cdot 0$.

The "Secular Variation 1890.0 " is the same as that given in the Ten-Year Catalogue, except for stars within 5° of the Pole. For these latter stars bath the Annual

Precession and the Secular Yariation have been computed by the help of Folie's "Douze Tables pour le calcul des reductions stellaires," in which Struve's Constant of Precession is used. The Precession is given by the formula-

$$
3^{\mathrm{s} .0725}+1^{\mathrm{s} .3369}[\log .=0 \cdot 12611] \sin \text { R.A. cot. N.P.D. }
$$

and the Secular Variation by the formula-

$$
\mathrm{A}+\mathrm{B} \text { cot. N.P.D. }+\mathrm{C} \cot ^{2}{ }^{2} \text { N.P.D. }
$$

where-

$$
\begin{aligned}
& A=0^{8.00190}+0^{8.00650 \sin 2 \text { R.A. }} \\
& B=-0^{8.00057 \sin \text { R.A. }+0^{8.02987 ~ c o s . ~ R, A . ~}} \\
& C=+0^{5.01300 \text { sin } 2 \text { R.A. }}
\end{aligned}
$$

The second term of the precession is readily computed from these tables, and the quantities $\mathrm{A}, \mathrm{B}, \mathrm{C}$, are therein tabulated for every minute of R.A. These formulæ correspond essentially with those used in previous Catalogues, but the method of computation is simpler.

The "Annual Proper Motion $1890^{\circ} 0$ " has been taken from Prof. Auwers' "Neue Reduction der Bradleyschen Beobachtungen," or his "Catalog der Fundamental Sterne," for stars contained in either of those works. The authority for other Proper Motions is giren in the Notes.

To the columns relating to N.P.D. the same remarks generally apply as in the case of R.A., except that in combining observations above and below Pole the weights mentioned below were used in forming the means. For stars whose N.P.D does not exceed 15° the observations above and below Pole are considered equally good; from N.P.D. 15° to N.P.D. 36°, those below Pole have the weight $\frac{2}{3}$ for each observation ; from N.P.D. 36° to N.P.D. 41° those below Pole have the weight $\frac{1}{2}$: beyond 41° N.P.D. the observations below Pole are not used, and in the case of those stars observed below Pole only the mean result is enclosed within brackets.

The Annual Precession and Secular. Variation for stars not within 5° of the Pole have been formed as explained above; for the stars within 5° of the Pole they have
been computed by the help of Folie＇s Tables referred to above．The Precession is given by the formula－
－20＂•0530 cos R．A．
which is taken directly from the Tables，and the Secular Variation by the formula－

$$
A^{1}+B^{1} \cot \text {. N.P.D. }
$$

where－

$$
\begin{aligned}
& \mathrm{A}^{2}=+0^{\prime \prime} \cdot 0086 \cos \text { R.A. }+0^{\prime \prime} .4480 \sin \text { R.A. } \\
& \mathrm{B}^{\mathrm{l}}=+0^{\prime \prime} \cdot 1950 \sin ^{2} \text { R.A. }
\end{aligned}
$$

The quantities A^{1} and B^{1} are given directly in the Tables for every minute of R．A．

IV．－Conparison of the Places of Chock－Stars in R．A．and N．P．D．from Observations made in the Years $1887-1891$ with those of the Ten－ Year Catalogue．

The following tables give the mean excess of R．A．and N．P．D．from the Five－Y ear Catalogue over those deduced from the Ten－Year Catalogue，for each hour of R．A．， and for every 10° of N．P．D．，weights being assigned to the individual excesses according to the formula $\frac{m n}{m+n}$ ，where m and w are the numbers of observations in the two Catalogues respectively．

EXCESS OF R．A．＇s OF CLOCK STARS FROM FIVE－YEAR CATALOGUE ABOVE THOSE OF THE TEN－YEAR CATALOGUE REDUCED TO 1890 O FOR EVERY HOUR OF R．A． AND EVERY 10° OF N．P．D．

$\begin{gathered} \text { Limits } \\ \text { of } \\ \text { R.A. } \end{gathered}$	Correction．	\％	$\begin{gathered} \text { Limits } \\ \text { of } \\ \text { R.A. } \end{gathered}$	Correction．	茄	$\begin{gathered} \text { Limits } \\ \text { nf } \\ \text { R.A. } \end{gathered}$	Correction．	淢	$\begin{aligned} & \text { Limils } \\ & \text { of } \\ & \text { N.P.D. } \end{aligned}$	Correc－ tion．	\％ 0 0 0
h h	＋．005土•003			8^{8}		1617					
0－1	$+.005 \pm .003$	147	8－9	－．014士．005	55	16－17	$-\cdot 008 \pm .004$	74	50－60	$\cdots \cdot 005$	156
1－2	－000士．003	133	9－10	$-.006 \pm .004$	68	17－18	$-.009 \pm .003$	95	60－70	＋．001	461
2－3	$+.005 \pm .003$	111	10－11	＋．007士．004	87	18－19	$+.003 \pm .003$	150	70－80	－000	525
3－4	$-.007 \pm .003$	95	11～12	－．005士．004	74	19－20	$+\cdot 006 \pm .003$	I 57	80－90	＋．001	601
4－5	$\cdot 000 \pm .004$	88	12－13	＋．004 $\pm .004$	75	20－21	$+\cdot 004 \pm .003$	109	90－100	－．005	339
5－6	$+.004 \pm .004$	87	13－14	＋．001 $\pm .003$	117	21－22	－．010士．004	90	100－110	－．002	227
6.7	$-.002 \pm .003$	99	14^{-15}	＋．008 $\pm .004$	89	22－23	$-.016 \pm .003$	125	110－124	－．006	89
7－8	$+\cdot 001 \pm .003$	107	15－16	$\cdot 000 \pm .004$	87	23－24	＋．002 $\pm .004$	79			

SO 11426．Greenwich Five－Year Catalouue for 1890.

EXCESS OF N．P．D．＇s OF 2 I CLOCK STARS FROM FIVE－YEAR CA＇IALOGUE ABOVE THOSE OF THE TEN：YEAK CATALOGUE REDUCED TO $1890-0$ FOR EVERY HOUR OF R．A．AND EVERY 10° OF N．P．D．

$\begin{gathered} \text { Limits } \\ \text { of } \\ \text { R.A. } \end{gathered}$	Correction．	范	$\begin{gathered} \text { Limits } \\ \text { of } \\ \text { R.A. } \end{gathered}$	Correction．	号	$\begin{gathered} \text { Limits } \\ \text { of } \\ \text { R.A. } \end{gathered}$	Correction．	$\dot{1}$ \％ 0 0	$\begin{aligned} & \text { Limits } \\ & \text { of } \\ & \text { of.D. } \end{aligned}$	Correction．	䛧
$\mathrm{ha}_{0}^{\mathrm{h}}$－I	－0＂09	I 13	$8^{\text {h }}-{ }^{\text {h }}$	＋0．13	47	$16^{n}-17^{n}$	＋0．13	87	$50^{\circ}-60^{\circ}$	＋0＂13	137
$1-2$	0.00	90	9－10	－0．04	74	17－18	－0．22	130	$60-70$	－0．18	407
2－3	－0．14	91	10－11	－0．09	78	18－19	＋0．12	14^{8}	70－80	－0．09	499
3－4	－0．18	76	II－I2	＋0．03	93	19－20	－0．07	147	80－90	－0．04	531
4－5	－0．15	64	12－13	－0．05	66	20－21	－0．70	93	90－100	－0．02	327
5－6	－0．29	65	13－14	＋0．11	96	21－22	－0．13	84	100－110	＋0．01	205
6－7	－0．15	79	14－15	$+0.05$	I 29	22－23	－0．20	103	110－124	＋0．13	79
7－8	＋0．05	8 I	15－16	$0 \cdot 00$	94	23－24	－0．07	57			

Y．－Comparison of the Places of Circumpolar Stars as observed above and below the Pole fron Observations made in the Years 1887－1891．

The following tables show the mean excess of R．A．and of N．I．D．above Pole for all stars in the Five－Year Catalogue，of which observations were made both above and below the Pole．The star is desiguated by its No．taken fiom the Five－Year Catalogue．The figures on the same line as the No．refer to the observations above the Pole，those on the next line to the observations below．The excess of R．A．is multiplied by \sin N．P．D．in all cases，to reduce it to equatorial interval．The weights assigned to each star are computed as follows ：－For R．A．if m and n be the number of observations above and below the Pole respectively，the weight assigned is $\frac{4 m n}{m+n+\frac{1}{3} m n}$ ．The maximum weight for any star is thus 20 ，which corresponds to an infinite number of observations above and below the Pole，and the expression is equivalent to that for N．P．D．for stars at about 30° from the Pole．For N．P．D．the weights used are determined by use of the＂Probable Errors of Greenwich Observa－ tions in Zenith Distance，＂given by Mr．Stone in the Monthly Notices of the Royal Astrononical Society for 1869 June 11，page 324．Putting n for the number of observa－ tions of a star above Pole，e for the probable error of one observation；n_{1} and e_{I} the similar quantities for the observations below Pole ；e_{0} the probable systematic error affecting all observations of the same star，and depending on outstanding division error， uncertainty in the constant of refraction，\＆c．；the formula employed to determine the
weight to be given to that star is $\frac{2 n n_{1}}{n_{1} e^{3}+n e_{1}^{2}+2 n n_{1} e_{0}^{2}}$, or assuming $e_{0}^{2}=\frac{1}{10} e^{2}$, which would make $e_{0}=0^{\prime \prime} \cdot 16$, the weight becomes $\frac{2 n n_{1}}{n_{1} e^{2}+n \epsilon_{1}^{2}+\frac{1}{5} n n_{1} e^{2}}$, which has been adopted for use in this investigation.
tible of the excess of mean r.a. and mean n.p.d. above pole, Arranged IN ORDER OF RIGHT ASCENSION.

Surs So. No.	Mear.a.		No. of	$\begin{aligned} & \text { Execss of } \\ & \text { IL.A. } \\ & \text { abovele Pole } \\ & \times \sin \text { N.P.P. } \end{aligned}$	Weight.		$\begin{gathered} \text { Mean } \\ \text { Beate } \\ 1800+ \end{gathered}$	No. of	Excess of N.P D. above Pole.	Weight.
	h in					- , \quad				
7	0. $3+16.000$	89.31				34. $3 \cdot 58 \cdot 28$	$89 \cdot 81$	3		
	15.940	89.98	3	$+0.033$	+	59.07	$89 \cdot 98$	3	-0.79	5
12	-. $53.48 \cdot 194$	$89 \cdot 83$	34	$+0.003$	16	4. 20. 0.21	89.66	35	-0.21	29
	1. + $^{8.153}$	90.13	38			${ }^{0} 0^{+2}$	$90^{\circ} 25$	34		
16	1. 18. $30 \cdot 679$	$89 \cdot 25$ 80.48	230 224	0.000	19	1. 16.4130	89.47 80.53	$\begin{aligned} & 296 \\ & 330 \end{aligned}$	-0.46	38
22	I. 46.28 .909	$91 \cdot 36$	3			26. 52.19 .50	91.51	4		6
	28.952	91.45	1	-0.019	3	18.46	$90 \cdot 77$		+1.04	6
37	3.16. 28.097	$9 \mathrm{ra}^{\circ} 00$	2	-0.068	2	40.31. 51.36	91.00	2	-0.15	I
	28.202	88.35	1	-0.068	2	51.51	88.35		- 0	
46	4. $\begin{array}{r}2.13 \cdot 562 \\ 13.233\end{array}$	$90 \cdot 24$ 90.35	34	$+0.027$	16	4.44. $\begin{aligned} & 8 \cdot 37 \\ & 8.86\end{aligned}$	$90 \cdot 59$ $90 \cdot 35$	13	-0.49	25
56	5. $\begin{array}{r}13.233 \\ 8.33 .578\end{array}$	$90 \cdot 35$ 9138 98	47 3	-0.188		44. 6. $53 \cdot 93$	90.35 9108	47	+ 0.06	2
	33.847	$88 \cdot 12$	3	-0.188	5	1. $53 \cdot 87$	$88 \cdot 12$	3	+0.06	2
76	6. + $^{8.46 \cdot 624}$	$89^{8}+$	25	$+0.031$		2. 46.54 .40	$89^{\circ} 38$	88	-0.48	36
	$46 \cdot 016$	89:10	46	$+0.031$	15	54.88	$89 \cdot 49$	177	- 078	36
90	7.46. 51.175		49 104	-0.009	17	1. $\begin{array}{r}2.25 .81 \\ 26.31\end{array}$	$90 \cdot 13$ $90 \cdot 5$	36	-0.50	32
98	8. $\begin{array}{r}51.40 \% 78 \\ \hline 10\end{array}$	90.48 88.19	104 3	-0009	17	+1.31. $\begin{array}{r}26.31 \\ \hline 7.22\end{array}$	$90 \cdot 6$ 88.19	79		32
	8. $40 \% 50+$	$87 \cdot 64$	1	-0.010	3	+1.31.38.99	87.64	1	-1777	1
102	9.21. 21×791	89.92	19	+0.016		8. 11.17 .96	89.97	23	$+0.18$	25
	$21^{6} 678$	$90 \cdot 88$	15	+0.016	13	$17 \cdot 78$	90.90	22	$+0.18$	25
117	10. 56.56 .212	89.61	3	-		27.39.19.64	$89^{\circ}+0$		-0.52	5
	11. 56.233	89.80	2	-0.010	4	20.16	89.80	2	-0, ${ }^{2}$	5
122	$\begin{array}{r} 11.24 .52 .078 \\ 52.208 \end{array}$	$\begin{array}{r} 88 \cdot 37 \\ 80.80 \end{array}$	1	-0.045	3	20. 3.43 .30,	$\begin{aligned} & 89.32 \\ & 89.80 \end{aligned}$	8	$+0.67$	14
126	11.48. $\begin{array}{r}52 \cdot 208 \\ 2 \cdot 563\end{array}$	$\begin{aligned} & 89.80 \\ & 90.31 \end{aligned}$	$\frac{3}{5}$	-0.04	3	35.41. $\begin{array}{r}42 \cdot 63 \\ 37.28\end{array}$	$\begin{aligned} & 89.80 \\ & 90.31 \end{aligned}$	9		
126	11.48. ${ }_{2}$	91.30	2	-0.025	4	35.41 .37 .28 37.28	91.30	2	0.00	4
131	12.14.22.157	90.07	48	+0.039		-1.41. 24.97	90.09	4	-0.48	31
	20.815	89.96	54	+0.039	17	2545	$89 \cdot 89$	44	-048	31
151	14. $\begin{array}{r}\text { 1. } 2+\times 558 \\ 2+\cdots 76\end{array}$	$\begin{aligned} & 88.01 \\ & 90.69 \end{aligned}$	5	-0.050	5	25. $5 \cdot 5 \cdot 5 \cdot 86$	87.78 89.27		$+0.03$	15
159	2+776	90.69		-0.050	5	15.23.41.61	89.27 89.40	9 17		
						+2.14	88.93	4	-0.53	11
164	15.12.50.203	90.24	53	+0.032	16	$2.20 .+10+3$	90.17	4.3	-0.11	28
	15.47427	$90^{\circ} 47$	30	+0.032		$+104$		22	- 011	
170	$\begin{array}{r} 15.47 .59^{\circ} 665 \\ 59^{\circ} 94^{2} \end{array}$	$\begin{aligned} & 89 \cdot 22 \\ & 88 \cdot 78 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	-0.057	6	$\begin{array}{ll} 11.52 . & 2.60 \\ 2.33 \end{array}$	89.46 89.01	12	$+0.27$	15
175						28.14.12.29	88.36	3		
						$\begin{array}{r}1178 \\ \hline\end{array}$	$90 \cdot 88$	2	$+0.51$	4

TABLE OF THE EXCESS OF MEAN R.A. AND MEAN N.P.D., \&C.-continued.

$\begin{aligned} & \text { Star's } \\ & \text { No. } \end{aligned}$		Mean Date, $1800+$	No. of	Excess cf R.A. above Pole $\times \sin$ N.P.D.	Weight.	$\begin{aligned} & \text { Mean N.P.D. } \\ & 18900^{\circ} 0 . \end{aligned}$	Mean Date. $1800+$	No. of Obs.	Excess of N.P.D. above Pole.	Weight.
182			3	-0.100	4	,			"	
						7.46.57.53				16
		$91^{\circ 03}$				57.06	89.40	6	$+0.47$	16
187	17.27 .56 .80656.708	$88 \cdot 53$	8	$+0.060$		37.37. I•39	88.47	8	${ }^{1}+0.01$	2
		87.96	1	+ 0.060	3	1•38	87.96	I	+ 0.01	2
195	18.7.47*598	$88 \cdot 98$	59	$+0.015$	16	3.23.17.92	$89^{\circ} 32$	171	-0.49	34
	47.321	90.03	30	$+0.015$		18.41	$89^{\circ} 26$	61	-0.49	34
209	19.33.35.318	89.39	65	$+0.029$	15	1. 1. $59^{\circ} 02$	89.29	145	-00.49	35
	33.705	$89^{\circ} 79$	18			$59^{\circ} 51$	89.27	82	$-0+9$	35
220	20. 33.44 .984	$90 \cdot 04$	59			8. 56. 24.06	89.97	65	-0.12	28
		90.11	19	-0.044	15	24.18	90.05	24	-0.12	28
230	21.15.57.172	$89^{\circ} \mathrm{I}$ I	10	+0.019	9	$27.52 .49^{\circ} 00$	$89^{\circ} 17$	16	-0096	13
	57*131	88.71	8			3.25. $\begin{array}{r}49 \\ \hline 9\end{array}$	88.83	8		
232	21.21.28.509	89.93	43	$+0.030$	I I		89.92	28	-0.75	17
234	28.012	$90^{\prime} 18$	7			9*94	90.16	6		
	21.27.14.281	88.92	2	-0.059		19.55.19.51	$88 \cdot 77$	6	$+0.04$	1 I
	14455	89.82	3	-0.05	4	$19 * 7$	90.09	6	$+0.04$	11
24.3	22.21. 58.914	90.2 1	;6	$+0.005$	16	4.26.45*09	$89^{\circ} 94$	36		
		90.2 I	27	$+0.005$	16	$+5^{-61}$	89.78	17	-0.52	25
253	$23 \cdot 27 \cdot 49^{\cdot 6}+3$	90:23	56		16	3. $17.57 \cdot t^{2}$	$89^{\circ} 9^{2}$	45	0.08	
	23.34 .49 .74050.078	$89^{\circ} 94$	35	+0.019	16	57.50	$89 \cdot 75$	35	- 0.08	30
255		90.86	2	-0.076	2	12. 58.52 .63	89 88.42	9	-0.32	19
		87×34	I	-0.076	2	52.95	88.90	15	-032	19

The weighted means for each $6^{\text {h. }}$ of R.A. are shown in the following table, the corresponding numbers for the Ten-Year Catalogue, as found from the table on page 46 of its Introduction, being added for comparison.

$\underset{\text { RA. }}{\substack{\text { Limits } \\ \text { of }}}$	Mean Excess of R.A. above Pole $\times \sin$ N.P.D.		Mean Excess of N.P.D. above Pole.	
	Five-Year.	Ten-Year.	Five-Year.	Ten-Year.
$\begin{array}{lr}\text { b } \\ 0 \\ 0 & \text { h } \\ 6\end{array}$	- ${ }^{\text {s }} \cdot 007$	8 $-\quad .029$	-0.32	-0.10
6-12	+.004	-.003	-0.21	-0.05
12-18	+.00\%	-. 026	-0.11	-0.08
$18-24$	+.005	-.009	-0.39	-0.18
Mean ...	+.002	-.017	-0.26	-0.10

These stars may also be arranged in order of N.P.D. as follows :-

Star's No.	$\underset{\text { A.A. }}{\substack{\text { Approximate } \\ \text { R. }}}$	Excess of R.A. abovo Pole $x \sin$ N.P.D.	Weight.	Approximate N.I'D.	Excess of N.P.D. above Polc.	Weight.
	h m	8		\bigcirc	"	
209	19. 34	+ 0.029	15	1. 2	- 0.49	35
90	7.47	-0.009	17	1. 2	- 0.50	32
16	1. 19	0.000	19	1. 17	- 0.46	38
131	12. 14	$+0.039$	17	1. 41	-0.48	31
164	15.13	$+0.032$	16	2. 2 I	- Oill	28
76	6. 49	$+0.031$	15	2.47	- 0.48	36
253	23.28	$+0.019$	16	3. 18	- 0.08	30
195	18. 8	$+0.015$	16	3.23	- 0.49	34
232	2 I 21	$+0.030$	11	3.25	- 0.75	17
12	0. 54	+ 0.003	16	4.20	- 0.21	29
243	22.22	$+0.006$	16	4.27	- 0.52	25
46	4. 2	+ 0.027	16	4.44	- 0.49	25
182	16. 57	-0.100	4	7.47	+ 0.47	16
102	9. 21	+ 0.016	13	8. 11	+ 0.18	25
220	20. 34	-0.044	15	8. 56	-0.12	28
170	15.48	-0.057	6	11. 52	+ 0.27	15
255	23.35	-0.076	2	12. 59	-0.32	19
159	14. 51	15.24	- 0.53	II
234	21.27	-0.059	4	19. 55	$+0.04$	I I
122	II. 25	-0.045	3	20. 4	+ 0.67	14
151	I 4. I	-0.050	5	25. 6	$+0.03$	15
22	I. 46	-0.019	3	26. 52	+ 1.04	6
117	10. 57	-0.010	4	27. 39	- 0.52	5
230	21. 16	$+0.019$	9	27.53	- 0.96	13
175	16.22		...	28.14	$+0.51$	4
7	-. 34	$+0.033$	4	34. 4	-0079	
126	11. 48	-0.025	4	$35 \cdot 42$	0.00	4
187	17.28	$+0.060$	3	37.37	+ 0.01	2
37	3.16	- 0.068	2	40. 32	- 0.15	1
98	8. 52	- 0.010	3	41. 32°	- 1.77	1
56	5. 9	-0.188	5	44. 7	+ 0.06	2

Taking the weighted means of the six groups we get the following numbers, corresponding quantitics from the Ten-Year Catalogue being added for comparison on two methods. In columns marked (1.) the result is deduced by. selecting actually the same stars as those of the Five- Year Catalogue from the table on pages 46-54 of the SO 11426. Greenwich Five-Year Catalogue for 1890.

14 Greenwich Five-Year Catalogue of Fundamental Stars for 1890.

Introduction to the Ten-Year Catalogue ; in the columns marked (2.) the result for the particular N.P.D. is inferred from the collected results on page 55 of that Introduction, except in the case of the first group.

Group.	$\begin{aligned} & \text { Approximate } \\ & \text { N.P.D. } \end{aligned}$	Excess of R.A. above Pole $\times \sin$ N.P.D.			Excess of N.P.D. above Pole.		
		Five-Year,	Ten-Year.		Five-Year.	Ten-Year.	
			(1.)	(2.)		(1.)	(2.)
1	1.29	s $+\quad .017$	+ ${ }^{8} .010$	$\left(+^{8} \cdot 1010\right)$	-0.42	-0.48	(-0.48)
2	3. 27	+.019	+.017	+.015	-0.64	-0.42	-0.37
3	6.29	-.005	-. 068	-.016	-0.14	-0.37	-0.02
4	16. 3	-. 057	$+\cdot 005$	+.005	+0.03	+0.09	+0.13
5		-. 008	-.008	-. 007	-0.15	-0.36	-0.26
6	38. 56	-.043	$+\cdot 005$	-. 025	-0.38	-0.51	-0. 57

The evidence, so far as it goes, seems to show that the Systematic Errors of the Five-Year Catalogue are nearly the same as those of the Ten-Year Catalogue, especially in N.P.D.
W. H. M. CHRISTIE.

Royal Observatory, Greenwich, 1893 August 10.

GREENWICH

FIVE-YEAR CATALOGUE

 of258 FUNDAMENTAL STARS

FOR

$1890 \cdot 0$

FROM OBSERVATIONS

ROYAL OBSERVATORY, GREENWICH,
 188% to 1891.

NOTE.

STAR'S NAME.

The "Star's Name" adopted in this Catalogue is taken from one of the following authorities, the order of preference being the order of mention of the authority below :-

1. Flamsteed's constellation No. and constellation, with Bayer's letter, taken from Baily's edition of Flamsteed, or from the British Association Catalogue. When the description in Baily's Flamsteed (B. F.) differs from that in the British Association Catalogue (B. A. C.) the clifference is mentioned in the Notes.
2. The No. in Bessel's Fundamenta Astronomice deduced from Bradley's observations, referred to as "Bradley."
3. The Hour and No. in Piazzi's Catalogue, edition 1814.
4. The No. in Groombridge's Catalogue.

MAGNITUDE.

The magnitude is taken from the Harvard Photometry for stars contained in that work, and for other stars (marked*) from the Bonn Durchmusterung. For the few remaining stars (marked \dagger) the authority for the magnitude is given in the Notes. The magnitude in the Uranometria Nova Oxoniensis is given in the Notes for all cases in which it differs by more than 0.2 magnitude from that in the Harvard Photometry.

The magnitudes of the components of double stars, taken from Struve's Mensurce Micrometrice or other authority, are given in the Notes.

In the case of variable stars the limits of magnitude and the period given in the Notes are taken from Mr. Chandler's Catalogue in the Astronomical Journal, Nos. 179, 180.

PROPER MOTIONS.

The proper motions are taken from Professor Auwers' "Neue-Reduction der Bradleyschen Beobachtungen" or his "Catalog der Fundamental Sterne" for stars contained in either of those works. The authority for other proper motions is given in the Notes.

No.	Star's Name.	Mag.	Mean Date. $1800+$		No. of Observations.		Seconds of Mean R.A. $1890^{\circ} 0$ deduced from		Adopted Mean R.A.$1890 \cdot 0$	Annual Precession. 1890.0.	Secular Variation.$1890 \cdot 0$	Annual Proper Motion. I890.
			$\begin{gathered} 1887 \text { to } \\ 189 \mathrm{I} . \end{gathered}$	10-Year Catalogue.	$\begin{aligned} & 1887 \text { to } \\ & 1891 . \end{aligned}$	10-Year Catalogue.	$\begin{gathered} 1887 \text { to } \\ \text { I } 89 \mathrm{I} . \end{gathered}$	10-Year Catalogue.				
							s	s	b im s	s	8	s
1	21 Andromedæ a	2.I	89.06	$82 \cdot 06$	36	69	$42 \cdot 077$	$42 \cdot 082$	-. 2. 42.077	$+3.0810$	$+0.0183$	$+0.0095$
2	88 Pegasi................. γ	3.0	$89 \cdot 60$	$82 \cdot 68$	16	38	$34^{\circ} 245$	$34 \cdot 235$	0. 7. $34 \cdot 245$	$+3.0839$	+0.0101	-0.0007
3	8 Cetii	3.6	89.88	$82 \cdot 21$	II	22	$49^{\circ} 340$	$49 \cdot 361$	o. 13. 49.340	+ 3.0591	-0.0023	-0.0032
4	44 Piscium	$5 \cdot 8$	89.44	$83 \cdot 32$	13	30	$45 \cdot 793$	$45 \cdot 792$	O. 19. 45×793	+ 3.0752	$+0.0037$	-0.0028
5	12 Ceti	$6 \cdot 2$	89.69	83.17	23	28	25.458	$25 * 453$	0. $24.25 \cdot 458$	+3.06II	+0.0009	-0.0003
6	30 Andromedæ ε	$4 \cdot 6$	$89 \cdot 70$	$82 \cdot 77$	25	51	44.533	$44^{\circ} 534$	-. 32. $44 \cdot 533$	+ 3.1768	$+0.0209$	-0.0184
7	18 Cassiopeiæ...........a	Var.	$89 \cdot 31$	$82 \cdot 63$	2	33	$16 \cdot 000$	15.956	0. $34.15 * 959$	$+3 \cdot 3670$	+0.0555	$+0.0035$
	, S.P.........		89.98	$82 \cdot 6$	3	33	15.940	1595				
18	I6 Ceti.................... β	$2 \cdot 1$	89.29	$82 \cdot 38$	I6	42	$4 \cdot 055$	4.035	0. 38. $4^{\cdot 055}$	+2.9982	-0.0054	$+0.0147$
9	63 Piscium δ	$4 \cdot 6$	$89 \cdot 39$	$82 \cdot 46$	26	48	58.459	$58 \cdot 458$	0. 42.58 .459	+ 3.1030	+0.0079	$+0.0035$
10	20 Ceti	$5^{\circ} 0$	$89 \cdot 57$	$83 \cdot 26$	17	30	$23 \cdot 123$	$23^{\prime} 101$	0. $47 \cdot 23^{\cdot 123}$	+ 3.0642	$+0.0036$	-0.0022
II	37 Andromedæ......... μ	$3 \cdot 9$	89.05	82.86	15	28	$38 \cdot 795$	$38 \cdot 752$	0. 50. $3^{8 \cdot 795}$	+ $3 \cdot 3007$	$+0.0305$	+0.005
12	2 Ursæ Minoris	$4 \cdot 5$	$89 \cdot 83$	$84 \cdot 72$	34	14	$48 \cdot 194$	$47 \cdot 688$	O. 53. $48 \cdot 173$	+ 7-1772	+ 1.4116	+0.0686
	- ${ }^{\text {a }}$	45	$90 \cdot 13$		38	14	$48 \cdot 153$	47688	-. $53 \cdot 48 \cdot 173$	$+7 \times 1772$		
13	71 Piscium ε	$4: 5$	89.40	$82 \cdot 57$	20	58	13.999	14.005	-. 57.13 .999	$+3.1148$	$+0.0087$	-0.0070
14	43 Andromedæ......... β	$2 \cdot 2$	$89 \cdot 66$	82.63	39	91	34.36I	$34 \cdot 353$	1. 3. $34^{\circ} 361$	$+3.3292$	$+0.0286$	+0.0144
15	86 Piscinm.............. ζ^{1}	$4^{\circ} 2$	$89 \cdot 11$	84.31	27	40	$58 \cdot 966$	$58 \cdot 986$	I. 7. $58 \cdot 966$	+ 3.1204	+0.009I	+0.0075
16	1 Ursæ Minorisa	$2 \cdot 2$	$89 \cdot 25$	$82 \cdot 26$	230	1013	$30 \cdot 679$	$29 \cdot 878$	I, I8. $30 \cdot 680$	+23.1993	$+17.7732$	+0.1137
	" S.P	2	89.48	$82 \cdot 2$	224	1013	$30 \cdot 680$	29.878	1, 18. 30680	+23 1993	+17 7732	+ 0113
17	45 Ceti θ	$3 \cdot 8$	$90 \cdot 75$	$80 \cdot 90$	11	24	$3 \mathrm{I} \cdot 453$	31.444	I. I8. 3 I. 453	$+3.0034$	$+0.0019$	-0.0068
18	99 Piscium η	$3 \cdot 7$	$89 \cdot 65$	$8 \mathrm{I} \cdot 85$	30	78	$35^{\circ} 771$	35.761	1. $25.35 \cdot 77 \mathrm{I}$	$+3 \cdot 2012$	+0.0142	-0.0002
19	Io6 Pisciumv	4.7	89.56	82.43	44	71	$42 \cdot 347$	$42 \cdot 350$	I. $35 \cdot 42 \cdot 347$	+ 3.1193	+0.0091	-0.0034
20	I 10 Piscium 0	$4 \cdot 4$	$89 \cdot 68$	81.70	23	45	$35 \cdot 021$	$35 \cdot 032$	I. $39.35^{\circ} \mathrm{O} \mathrm{I}$	$+3.1576$	+0.0111	+0.0029
21	55 Ceti ζ	$3 \cdot 9$	89.08	79*91	5	6	I.781	1.830	I. 46.1×795	+ 2.9578	$+0.0023$	+0.0003
22	45 Cassiopeiæ ε	$3 \cdot 6$	91.36	$80 \cdot 86$	3	10	$28 \cdot 909$	29.015	I. $46.28 \cdot 973$	$+4.2546$	$+0.0994$	$+0.0036$
			91.45		1		$28 \cdot 952$	-			+	
23	6 Arietis β	$2 \cdot 8$	89.13	81.80	21	69	$33^{\prime} 745$	33•745	I. $48.33 \cdot 745$	+ 3.2977	$+0.0183$	$+0.0050$
24	57 Andromedæ γ^{1}	3.0	$90 \cdot 43$	$80 \cdot 77$	4	32	8.763	8.796	1. $57.8 \cdot 789$	+ 3.6572	+0.0393	+0.002I
25	13 Arietis ${ }^{\text {a }}$	$2 \cdot 0$	$89 \cdot 52$	81.28	39	80	$58 \cdot 312$	$58 \cdot 302$	2. $0.58 \cdot 312$	+ 3.3574	$+0.0203$	$+0.0127$
26	65 Ceti 5^{1}	4*5	89.57	81.51	19	28	10. 102	10.127	2. 7. 10'102	+ 3.1757	+0.0116	-0.0032
27	67 Ceti......................	$5 \cdot 5$	$90 \cdot 88$	$82 \cdot 29$	6	34	$29^{\cdot} 778$	$29^{\prime} 753$	2. II. $29 \cdot 763$	+ $2 \cdot 9843$	+0.0050	+0.0036
28	73 Ceti................... ξ^{2}	$4 * 4$	$89 \cdot 64$	$82 \cdot 07$	20	40	18.565	18.573	2. 22. $18 \cdot 565$	$+3.1814$	$+0.0116$	$+0.0011$
${ }^{29}$	78 Ceti................... ν	$4 \cdot 9$	88.73	82.24	15	33	$6 \cdot 045$	6.030	2. 30.6 .045	+ 3.1453	+0.0103	-0.005I
30	82 Ceti................... δ	4^{11}	89.48	81.87	16	36	$50 \cdot 607$	$50 \cdot 607$	2. $33 \cdot 50 \cdot 607$	$+3.0704$	$+0.0081$	$+0.0004$
3 I	86 Ceti................... γ^{2}	3.0	89.88	$8 \mathrm{I} \cdot 64$	12	3	35.989	35.978	2. $37.35 \cdot 989$	+ 3'1135	+0.0094	-0.0114
32	43 Arietis................ σ	$5 \cdot 5$	$89 \cdot 34$	82.86	9	39	25-109	$25 \cdot 103$	2. $45.25 \cdot 106$	+ 3.303I	+0.0150	-0.0002

2. The magnitude given in the Uranometria Nova Oxoniensis is 2.5 .
3. The limits of magnitude are 2.2 and $2 \cdot 8$; the period irregular.
4. The magnitude given in the Uranometria Nova Oxoniensis is $4^{\circ} 3$.
5. The magnitude given in the Uranometria Nova Oxoniensis is 4.2 .
6. The magnitude given in the Uranometria Nova Oxoniensis is $4^{\circ} 3$.
7. The magnitude given in the Uranometria. Nora Oxoniensis is 2.4 .
iI. Authority for proper motion in R.A. : Mem. R.A.S., Vol. XIX.

Mean Date. $1800+$		No. of Observations.		Seconds of Mean N.P.D. $1890^{\circ} 0$ deduced from		Adopted Mean N.P.D. $1890^{\circ} 0$.	Annual Precession.$1890 \cdot 0$	Secular Variation.$\text { I } 8900^{\circ} 0 .$	Annual Proper Mation. $1890 \cdot 0 .$	Star's Name.	No.
$\begin{aligned} & 1887 \text { to } \\ & 1891 . \end{aligned}$	10-Year Catalogue.	$\begin{gathered} 1887 \text { to } \\ \text { I } 891 . \end{gathered}$	ro-Year Catalogue.	$\begin{aligned} & \text { I } 887 \text { to } \\ & 189 \mathrm{I} \text {. } \end{aligned}$	10-Year Catalogue.						
				"	"	\bigcirc	"	"	"		
89.41	$81 \cdot 65$	34	42	0.61	0.86	61. $31.0 \cdot 61$	-20.052	+0.013	+0.156	$21 . A n d r o m e d æ$........ α	1
$90 \cdot 58$	$82 \cdot 72$	19	32	$40 \cdot 96$	$41 \cdot 35$	75.25.40.96	-20.043	$+0.022$	$+0.013$	88 Pegasi................. γ°	2.
$89 \cdot 74$	$83 \cdot 20$	14	20	I. 82	$2 \cdot 20$	99. $26.1 \cdot 82$	-20.016	$+0.035$	+0.032	8 Ceti 1	3
$90 \cdot 02$	84.19	10	30	$10 \cdot 83$	$10 \cdot 66$	88. 40. 10.83	-19.979	$+0.046$	+0.011	44 Piscium	4
89.95	83.91	23	26	$55 \cdot 24$	$55 \cdot 07$	94. $33.55 \cdot 24$	-19*939	$+0.055$	+0.009	12 Ceti	5
90.03	$81 \cdot 45$	15	25	$7 \cdot 84$	$8 \cdot 54$	61. 17. 7-84	-19.843	$+0.073$	$+0.251$	30 AndromedæE	6
89.81	$82 \cdot+4$	3	31	$58 \cdot 28$	$58 \cdot 30$	34. 3. 58×43	-19.830	$+0.080$	$+0.038$	18 Cassiopeiæ...........a	7
89.98	$82+4$	3	31	59.07	58	34. 3. 58-43	-19 ${ }^{3}$	+ 0.080	$+0.038$	S.P.	
$89 \cdot 81$	$83 \cdot 22$	14	25	$26 \cdot 38$	$26 \cdot 17$	108. $35 \cdot 26 \cdot 38$	-19.778	$+0.080$	-0.034	16 Ceti........ β	8
90. 11	$82 \cdot 35$	I4	39	$49 \cdot 86$	$49 \cdot 75$	83. 0. $49 \cdot 86$	-19.702	$+0.092$	$+0.037$	63 Pisciumi.	9
89.40	$83 \cdot 63$	18	29	$30 \cdot 43$	$30 \cdot 39$	91. $44 \cdot 30 \cdot 43$	-19.626	+0.099	+0.009	20 Ceti	10
89.50	$82 \cdot 72$	9	28	$50 \cdot 61$	$50 \cdot 78$	52. 5. $50 \cdot 69$	-19.566	+0.113	-0.049	37 Andromedæ μ	11
$89 \cdot 66$	85•19	35	27	0.21	0.42	4. 20, $0 \cdot 31$	-19.504	+0.252	$+0.010$	2 Urse Minuris	12
90.25	8519	34	27	0.42	042	4. 20. $0 \cdot 31$	-19 204	+ 0.25	+0.010	S.P. ...	
$89 \cdot 42$	$82 \cdot 89$	10	47	$8 \cdot 97$	$8 \cdot 54$	82. 42. $8 \cdot 97$	-19.431	$+0.120$	-0.039	71 Piscium	13
$88 \cdot 96$	82.21	22	52	46.19	$45 \cdot 89$	54. 57. 46.19	-19.287	+0.140	$+0.084$	43 Andromedx 3	14
$88 \cdot 91$	84.23	13	30	24-16	$23 \cdot 78$	83. 0. $24 \cdot 16$	-19.178	+0.140	+0.051	85 Piscium..............5 ${ }^{\text {¹ }}$	15
89.47	81.98	296		41•30	$41 \cdot 63$	1. 16. $4 \mathrm{I} \cdot 54$	-18.889	+ I.146	+0.002	I Urse Minorisa	16
$89 \cdot 53$	81.98	330	1433	41.76	$41 \cdot 63$	1. 16.4154	-18.889	+1146	$+0.002$	S.P....	
91.33	81.08	4	II	4.74	4.41	98. 45.4×54	-18.889	+0.154	$+0.196$	45 Ceti 0	17
$90 \cdot 87$	81.03	14	34	$17 \cdot 38$	$17 \cdot 52$	75. 13. $17 \cdot 38$	-18.671	+0.177	$+0.003$	99 Piscium η	18
$89 \cdot 57$	84.08	42	42	$9 \cdot 58$	$9 \cdot 42$	85. 4. $9 \cdot 58$	-18.330	+0.191	-0.005	106 Pisciumv	19
$89 \cdot 72$	83.42	25	28	$46 \cdot 11$	$46 \cdot 52$	81. 23. $4^{6 \cdot 11}$	-18.190	$+0.200$	-0.058	I 10 Piscium 0	20
89.02	$80 \cdot 69$	7	8	$43 \cdot 69$	$43 \cdot 97$	100. 52, 43.75	-17.945	$+0.200$	$+0.028$	${ }_{55}$ Ceti ${ }^{\text {c }}$	21
91.51	81•33	4	40	19.50	19.81	26. 52. 19*54	-17929	$+0.283$	$+0.022$	45 Cassiopeia ε	22
$89 \cdot 31$	82.57	26	66	$47 \cdot 80$	48. II	69. $43.47 \cdot 80$	$-17 \cdot 8+5$	+0.226	$+0.102$	6 Arietis β	23
$90 \cdot 4$	$80 \cdot 66$	4	32	54.07	54•16	48. II. $54^{1 / 14}$	-17490	+ 0.257	$+0.051$	57 Andromedæ γ^{1}	24
$89 \cdot 58$	$82 \cdot 46$	25	72	29.03	$29 \cdot 30$	67. 3. 29.03	-17.324	+0.253	+0.134	13 Arietisa	25
$89 \cdot 29$	$83 \cdot 60$	18	23	II•20	$10 \cdot 65$	81. 40.1 I'20	-17.045	+0.250	+0.001	65 Ceti....................5	26
91.02	$82 \cdot 54$	12	15	$46 \cdot 30$	$46 \cdot 04$	96. $55.46 \cdot 30$	-16.842	+0.2+3	+0.109	67 Ceti	27
$89 \cdot 62$	83.03	19	25	$0 \cdot 33$	$0 \cdot 17$	82. 2. 0.33	-16.309	$+0.276$	+0.001	73 Ceti ${ }^{2}$	28
$89 \cdot 72$	82.44	15	17	13.53	14.08	84. 53. 13.53	-15.903	+0.285	+0.028	78 Cetiv	29
$89 \cdot 80$	82.67	13	19	$46 \cdot 53$	$47 \cdot 32$	90. 8. $4^{6 \cdot 52}$	-15.702	+ 0.285	$+0.007$	82 Cetii	30
$90 \cdot 00$	$82 \cdot 57$	13	14	41.35	$41 \cdot 84$	87. 13. 41.35	-15.496	+ 0.294	+0.156	86 Ceti $. \ldots \ldots \gamma^{2}$	31
89.97	83.08	12	28	17.93	18.08	75. 22. 17.93	-15.053	+0.324	+0.039	43 Arietis σ	32

15. The magnitude given is taken from Struve's Mensure Mierometricre.
16. The magnitude is taken from Struve's Mcnsure Micrometricre.

3I. The magnitude given is taken from Struve's Mensurc Micrometrica.
21. The magnitnde siven in the Uranometria Noma Oronicusis is 3.5 .
27. The magnitule given in the Uranometrin Nora Oronicneis is $3 \cdot 8$.

33. A close double observed as one mass. The magnitnde given in the Uranometria Nora Oxoniensis is $4^{\circ} 2$. The magnitudes of the components given in Struve's Mensurce Micrometrice are 6.0 and 5.7 .
44. The designation in B. F. and the B. A. C. is γ Eridani.
49. The magnitude given in the Uranometria Nora Oxoniensis is $3 \cdot 6$.
-
45. The magnitude given in the Uranometria Aova Oxoniensis is 4.8 . 57. The magnitude given is taken from Struve's Mensura Micrometrica.

Mean Date. 1880+		No. of Observations.		Seconds of Mean N.P.D. 1890° deduced from		Adopted Mean N.P.D. $1890^{\circ} 0$.	Annual Precession.I890.0.	Secular Variation.$1890^{\circ} 0 .$	Annual Proper Motion. 1890.0.	Star's Name.	No.
$\begin{aligned} & 1887 \text { to } \\ & 1891 . \end{aligned}$	10-Year Catalogue.	$\begin{aligned} & 1887 \text { to } \\ & \text { I } 89 \mathrm{I} . \end{aligned}$	10-Year Catalogue.	$\begin{aligned} & 1887 \text { to } \\ & 1891 . \end{aligned}$	10-Year Catalogue.						
				"	"	- , "	"	"	.		
$89 \cdot 66$	82.09	9	31	0.22	$0 \cdot 60$	69. 6. 0.40	-14.611	+0.3+7	+0.006	+8 Arietis................ ε	33
$89 \cdot 80$	82.67	10	21	$32 \cdot 28$	$32 \cdot 15$	86. 20. $32 \cdot 28$	-14.39+	+0.323	+0.073	92 Ceti....................a	$3+$
$89 \cdot 55$	$82 \cdot 26$	19	24	$23 \cdot 58$	$23 \cdot 19$	70. 4 II. $23 \cdot 58$	-13.846	+ 0.365	-0.005	57 Arietis.................i	35
90.79	$82 \cdot 33$	12	26	59.53	$60 \cdot 41$	69. It. 5953	-13.237	+0.383	$+0.030$	61 Arietisr ${ }^{1}$	36
$91 \cdot 00$ 88.35	81'73	2	20	51•36	5I•92	+0. 3I. 5 I $\cdot 80$	-13.125	+0.473	$+0.033$	33 Persei ${ }^{\text {a }}$	37
$89 \cdot 89$	$83 \cdot 14$	II	22	$3 \mathrm{I} \cdot 88$	31•75	81. 21. 31-88	-12.965	+0.364	$+0.068$	I Tauri 0	38
88.90	$83 \cdot 32$	21	2 I	$27 \cdot 02$	27.16	77. 26. 27.02	- $12 \cdot 566$	+0.380	-0.011	\% Taurif f	39
90.79	83.35	7	20	51-35	52.33	99. 49. $51 \cdot 76$	-12.362	+0.337	-0.011	I8 Eridani ε	40
$89 \cdot 43$	83.83	6	15	36.95	$36 \cdot 65$	65. I. $36 \cdot 83$	-11.915	+0.423	+0.011	II Tauri....................	4
$90 \cdot 24$	81.18	8	15	10.81	II•10	100. 8. 10.91	-11.646	+0.346	-0.743	23 Eridanii	42
$87 \cdot 90$	81.29	14	33	$8 \cdot 23$	$8 \cdot 46$	66. 14. 8.23	-11.435	$+0 .+30^{\circ}$	+ 0.040	${ }_{25}$ Tauri ${ }^{\text {a }}$	43
$89 \cdot 23$	$82 \cdot 64$	14	13	$18 \cdot 92$	19.51	103. 49. 18.92	-10.560	+0.350	+ 0.106	3+ Eridani $\gamma^{\text {1 }}$	4
$89 \cdot 13$	81.95	12	24	9•39	$9 \cdot 23$	68. 13. 9*39	-10.163	+0.448	+0.058	37 'Tauri................ A^{1}	45
$90 \cdot 59$	$8+73$	13	12	$8 \cdot 37$	8.74	4. $44.8 \cdot 75$	$-9 \cdot 857$	+ 2.179	-0.015	Groombridge 750 ...	+6
$89 \cdot 55$	$82 \cdot 17$	10	21	$56 \cdot 66$	${ }_{5} 6 \cdot 33$	70. 40. 56.66	- 9.818	$+0.446$	+0.033	43 Tauri ${ }^{1}$	47
$89 \cdot 24$	83.02	8	13	$29 \cdot 53$	$30 \cdot 48$	97. 7. 29*79	-9.531	+0.379	-0.095	38 Eridani $0^{\text {d }}$	48
$89 \cdot 27$	$82 \cdot 87$	12	23	$18 \cdot 96$	19.04	74.38. $18 \cdot 96$	-8.984	+0.447	+0.030	is Tauri γ	49
$89 \cdot 32$	$80 \cdot 66$	12	13	$50 \cdot 71$	51.76	71. 3. 50.71	- 8.300	+0.466	$+0.028$	74 Tauri ε	50
89.42	$8 \mathrm{I} \cdot 93$	35	53	$45 \cdot 00$	$45 \cdot 07$	73. $\mathbf{4 2}^{\text {2 }} 45 \cdot 00$	$-7 \cdot 706$	$+0.463$	+0.184	87 Tauria	51
90.12	$81 \cdot 32$	9	28	$17 \cdot 89$	17. ${ }^{1}$	67. 15. 17.68	-7.215	+0.492	+0.009	9+ Tauri τ	52
89.87	$81 \cdot 84$	10	11	$24 \cdot 82$	$25 \cdot 13$	93. $27.24 \cdot 82$	- 6.859	+0.413	+0.002	57 Eridani μ	53
$88 \cdot 46$	$81 \cdot 24$	7	16	31.35	31.51	57. 0. $31 \cdot 4 \mathrm{I}$	-6.045	+0.544	$+0.003$	3 Aurigæ	54
$89 \cdot 56$	$80 \cdot 76$	4	25	10.04	$10 \cdot 28$	112.31. 10.22	- $5 \cdot 122$	+0.360	$+0.068$	2 Leporis ε	55
91.08	80'97	2	18	53.93	53.28	44. 6. 53.40	- 4.464	$+0.629$	+0.424	13 Aurigæa	56
88.12	80	3	18	$53 \cdot 87$	5328		+464	+	+0.424	S.P...........	
$89 \cdot 26$	$82 \cdot 48$	II	35	$44 \cdot 98$	$+5.68$	98. 19. $44 \cdot 98$	-4.405	+0. ${ }^{12} 2$	-0.003	19 Orionis β^{8}	57
$89 \cdot 79$	$80 \cdot 74$	I9	46	$9 \cdot 93$	10*51	61. 29. 9.93	- 3.539	+0.345	$+0.180$	112 Tauri β	58
$89 \cdot 38$	$83 \cdot 37$	II	24	52.42	$5^{2.40}$	90. 22. $52 \cdot t^{2}$	- 2.930	+0.4+3	+0.00j	3f Orionisi	59
91. 22	$79 \cdot 92$	3	25	$6 \cdot 08$	$6 \cdot 77$	107. 54. 6.39	- 2.802	+0.383	- 0.010	II Leparisa	60
88. 11	$82 \cdot 75$	7	17	$22 \cdot 19$	21'7t	91. 16. $22 \cdot 03$	- $2 \cdot 564$	+0.4.41	-0.006	46 Orionise	61
91.15	$82 \cdot 97$	1	15	$+^{\prime} 70$	$0 \cdot 67$	124. 8. I-12	- $2 \cdot 125$	$+0.316$	$+0.030$	Columbe	62
$87 \cdot 87$	$82 \cdot 3$ t	7	16	$33 \cdot 48$	33.92	99. $4^{2} \cdot 33 \cdot 64$	- 1.527	+0.119	-0.004	53 Orionisk	63
$89 \cdot 22$	$82 \cdot 61$	26	43	50.79	51.13	82. 36. $50 \cdot 79$	- 0.944	+0.473	-0.02.4	58 Orioniset	64
88.01	$80 \cdot 70$	I	9	$51 .+4$	$52 \cdot 66$	+5. 3. $52 \cdot+^{6}$	-0.7+7	+0.672	+0.011	3+ Aurigit β	65
$88 \cdot 96$	83.38	5	27	53*9+	53.59	66. +3. $53 \cdot 7+$	-0.224	+0.532	$+0.093$	I Geminorum	65

[^0]

[^1]

[^2]

Mean Date. $1800+$		No. of Observations.		Seconds of Mean N.P.D. 1890° deduced from		Adopted Mean N.P.D. $1890^{\circ} 0$.	Annual Precession.$1890 \cdot 0$	Seeular Variation.$\text { I } 890 \cdot 0 .$	Annual Proper Motion.$1890 \cdot 0$	Star's Name.	- No.
$\begin{gathered} 1887 \text { to } \\ \text { I891. } \end{gathered}$	10-Year Catalogue.	$\begin{gathered} 1887 \text { ta } \\ \text { I } 891 . \end{gathered}$	10-Year Catalogue.	$\begin{gathered} 1887 \text { to } \\ \text { I8gI. } \end{gathered}$	ro-Year Catalogue.						
				"	"	- ,	"	"	"		
$89 \cdot 55$	83.04	17	37	$22 \cdot 68$	$22 \cdot 65$	78. 53. $22 \cdot 68$	+14.290	+0.328	-0.009	76 Cancri.................к	100
$89 \cdot 32$	82.16	12	31	+3.62	$43 \cdot 29$	71. 49. $43 \cdot 62$	+14.952	+0.322	+0.139	83 Caneri	101
$89 \cdot 97$	$84 \cdot 78$	23	13	17.96	17•96	8. 11. $17 \cdot 87$	+15.439	+0.831	+0.020	Piazzi IX. 37	102
90.90		22	1	$17 \cdot 78$	1	8. 11. $17 \cdot 87$	+15439	+0.831	+0.020	S.P.	
$89 \cdot 75$	$82 \cdot 23$	II	30	55.73	$56 \cdot$ ar	98. 10. $55 \cdot 73$	$+15 \cdot 484$	+0.268	-0.052	30 Hydræa	103
$88 \cdot 84$	$82 \cdot 86$	8	15	$48 \cdot 80$	$48 \cdot 27$	78. 12.48.62	+15.695	+ 0.28y	+0.060	5 Leonis................. 5	104
89.17	$82 \cdot 72$	14	28	$27 \cdot 50$	$27 \cdot 63$	79. 36. $27 \cdot 50$	+16.187	+0.271	+0.018	If Loonis..................	105
89.03	81.51	8	27	$10 \cdot 67$	$10 \cdot 71$	65. 43. 10.69	+16.407	+0.281	+0.008	17 Lıonis.................e	106
$88 \cdot 92$	$82 \cdot 29$	29	39	31'13	$31 \cdot 25$	63. 28. 31-13	+16.747	+0.270	+0.045	If Leonis................ μ	107
$88 \cdot 95$	$82 \cdot 46$	14	21	$42 \cdot 07$	$42 \cdot 49$	85. 25.42.07	+17.117	+0.235	+0.011	29 Leonist	108
$89 \cdot 35$	$80 \cdot 88$	29	8I	$43 \cdot 56$	+4.09	77. 29. $43 \cdot 56$	+17.476	+0.224	-0.018	32 Leonis................. α	109
$89 \cdot 87$	83.01	15	50	$8 \cdot 61$	8.80	69. 36. 8.61	+17.943	+0.203	+0.136	41 Leonis γ^{1}	110
$90 \cdot 26$	81.63	5	II	$10 \cdot 80$	$10 \cdot 24$	69.36. $10 \cdot 59$	+17.941	+0.208	+0.136	41 Leonis γ^{2}	III
$90 \cdot 27$	83.02	8	21	$30 \cdot 62$	$30 \cdot 29$	106. 16. 30.49	+18.203	+0.171	+0.05i	42 IIydræ	112
$89 \cdot 29$	81.99	9	29	$39^{\circ} 45$	$39^{\circ} 4^{1}$	80. 7. $39 \cdot 43$	+18.426	+0.175	-0.011	47 Leonis.............. . ρ	113
$89 \cdot 35$	$83 \cdot 21$	10	29	$32 \cdot 27$	32.49	85. 50. $32 \cdot 27$	+18.751	+0.154	-0.033	34 Sextantis.............	114
$88 \cdot 93$	83.83	14	41	$23 \cdot 25$	$22 \cdot 58$	78. 52. 23.25	+18.946	+0.144	+0.020	53 Leonisl	115
$88 \cdot 98$	$82 \cdot 83$	7	36	3I.68	31•57	85. 47. $3 \mathrm{I} \cdot 6 \mathrm{I}$	+19.250	+0.119	+0.012	58 Leonisd	116
$89 \cdot 40$	$82 \cdot 15$	8	101	$10 \cdot 64$	19.40	27. 39. $19 \cdot 67$	+19.299	+0.143	+0.071	50 Ursx Majoris	117
89.80	$82 \cdot 15$	2	101	20.16	1940	27. 39. 19 - 7	+19299	1 - $1+4$	+ 0.01	S.P....	
$89 \cdot 87$	83.79	14	23	10.16	10.32	82. 4. $10 \cdot 16$	+19.355	+0.112	+0.022	63 Leonis................ χ	118
$89 \cdot 28$	81•7t	21	64	$25 \cdot 38$	25.44	68. 52. $25 \cdot 38$	+19.545	+0.097	+0.115	68 Leonis.........i	119
$89 \cdot 57$	$82 \cdot 94$	9	21	0.14	0.44	104. II. 0.25	+19.6.88	+ 0.080	-0.209	12 Crateris δ	120
$89 \cdot 76$	$82 \cdot 33$	20	44	$17 \cdot 14$	17.15	86. 32. 17.14	+19.783	+0.056	+0.005	84 Leanis................r	12 I
$89 \cdot 32$	82:00	8	60	$43 \cdot 30$	$42 \cdot 95$	20. 3. $43 \cdot 12$	$+19 \cdot 818$	$+0.074$	$+0.027$	I Draeonis.............. λ	122
$89 \cdot 80$	82:00	9		$42 \cdot 63$	4295	20. 3. 43.12	+19818	+ $0 \cdot 0$	+0.027	, S.P.	
$89 \cdot 13$	$81 \cdot 71$	12	47	59.40	$59 \cdot 52$	90. 12. $59 \cdot 40$	$+19 \cdot 897$	$+0.048$	-0.047	91 Leonis................vv	123
89.21	$82 \cdot 24$	24	52	$47 \cdot 29$	$47 \cdot 40$	74. 48. $47 \cdot 29^{\text {8 }}$	+20.002	$+0.025$	$+0.098$	94 Leonis β	124
$90 \cdot 31$	$83 \cdot 64$	10	32	$55 \cdot 69$	$55 \cdot 63$	87. 36. $55 \cdot 69$	+20.010	$+0.022$	+ 0.262	5 Virginis.............. β	125
$90 \cdot 31$	82'19	5	35	37.28	$37 \cdot 10$	35.41. $37 \cdot 18$	+20.027	$+0.017$	-0.008	64 Ursx Majoris γ	126
91•30	8219	2	35	$37 \cdot 28$	3710	35. $41.37 \cdot 18$	+20.027			" S.P...	
$89 \cdot 62$	$82 \cdot 92$	30	22	20.61	20. 30	82. 46. $20 \cdot 6$ I	+20.049	$+0.002$	+0.017	8 Virginis.............. π	127
$88 \cdot 44$	$83 \cdot 11$	18	22	22.41	21.97	80. 39. 22.41	+20.053	-0.007	- 0.049	9 Virginis	128
$89 \cdot 65$	$82 \cdot 88$	6	20	29.49	29.08	112. 0. $29 \cdot 30$	+20.049	-0.016	-0.021	2 Corvi ε	129
$89 \cdot 37$	$83 \cdot 53$	10	33	$19 \cdot 63$	19.54	90. 3. 19.63	+20.014	-0.036	$+0.022$	15 Virginis)	130
$90 \cdot 09$	$79 * 75$	41	2	$2 \cdot 1 \cdot 97$	$24 \cdot 76$	1. $41.25 \cdot 22$	+20.015	-0.011	-0.076	Bradley 1672	131
$89 \cdot 99$	79.75	44	2	25.45	$2+76$	1. 41.2522	+20.015	-0.011	- 0	: S.1'...	

222. The magnitude given in the Uranometria Nora Oxmiensis is $\hat{3}^{\circ} 8$. 126. The magnitude given in the Uranometria Nota Oxoniensis is 2.3 .

No.	Star's Name.	Mag.	Mean Date. $1800+$		No. of Observations.		Seconds of Mean R.A. $1890^{\circ} 0$ deduced from		Adopted Mean R.A. $1890^{\circ} 0$.	Annual Precession.$1890^{\circ} 0 .$	Secular Variation.$1890 \circ 0 .$	Annual Proper Motion. $1890^{\circ} 0$.
			$\begin{gathered} \text { I887 to } \\ \text { I } 89 \mathrm{I} . \end{gathered}$	10.Year Catalogue.	$\begin{gathered} 1887 \text { to } \\ 1891 . \end{gathered}$	io-Year Catalogue.	$1887 \text { to }$ $189 \mathrm{I} .$	10-Year Catalogne.				
							s	8	1 m s	3	8	8
132	7 Corvi.................. ${ }^{2}$	3.1	$89 \cdot 28$	$82 \cdot 03$	18	20	10. 322	10. 332	12.24.10.322	+ 3.1126	+0.0119	-0.0142
133	9 Corvi... β	$2 \cdot 8$	88.91	$82 \cdot 79$	8	18	$36 \cdot 519$	$36 \cdot 514$	12.28.36.517	+ 3.1424	+0.0164	-0.0033
I 34	29 Virginis.............. γ^{1}		$88 \cdot 23$	$81 \cdot 37$	5	16	5.013	5.047	12.36. 5.028	+ 3.0756	+0.0043	-0.0385
135	29 Virginis................ γ^{2}	$2 \cdot 8$	$89 \cdot 30$	$81 \cdot 22$	2	9	5.157	$5 \cdot 221$	12.36. $5 \cdot 203$	+ 3.0756	$+0.0043$	-0.0385
I 36	30 Virginisp	5^{11}	$89 \cdot 35$	$82 \cdot 57$	17	19	18.985	18.983	12.36.18.985	+ 3.0320	-0.0016	$+0.0033$
137	35 Virginis	6•7*	$88 \cdot 48$	$8 \mathrm{I} \cdot 72$	II	27	$15 \cdot 324$	15.314	12.42.15.324	+ 3.0546	+0.002	-0.0030
138	31 Comæ	$5^{\circ} 0$	$89 \cdot 55$	$8 \mathrm{I} \cdot 8 \mathrm{I}$	7	33	20.408	$20 \cdot 420$	12.46.20.415	$+2.9289$	-0.0097	-0.0027
139	43 Virginis δ	$3 \cdot 7$	$89 \cdot 18$	$82 \cdot 52$	16	36	3.728	3.709	12.50. 3.728	+ 3.0523	+0.0026	-0.0336
140	12 Canum Venaticâm..a	$3 \cdot 2$	$89 \cdot 31$	$78 \cdot 93$	4	22	52.895	$52 \cdot 907$	12. 50. 52.904	$+2.8348$	-0.0152	-0.0220
14 I	47 Virginis ε	3.0	$88 \cdot 32$	81.96	17	69	$42 \cdot 056$	$42 \cdot 038$	12. 56.42•056	$+3.0055$	-0.0007	-0.0192
142	51 Virginis θ	$4^{\circ} 4$	89.25	82.63	21	49	15.216	$15 \cdot 246$	13. $4.15 \cdot 216$	$+3 \cdot 1046$	$+0.0078$	-0.0043
143	67 Virginisa	$1 \cdot 2$	89.88	81.51	39	162	23.845	$23 \cdot 820$	13.19.23.845	$+3 \cdot 1574$	+0.0115	-0.0044
144	79 Virginis 5	$3 \cdot 5$	89.54	$82 \cdot 60$	40	77	5.233	$5 \cdot 238$	13.29. 5.233	+ 3.0727	+0.0064	-0.0205
145	82 Virginis............. m	$5^{\circ} 3$	$89 \cdot 29$	82.87	21	32	$50 \cdot 250$	50.255	13.35.50.250	$+3.1502$	$+0.0107$	-0.0085
146	4 Boötis ${ }^{\text {r }}$	4*5	$89 \cdot 64$	81.52	18	26	$2 \cdot 057$	$2 \cdot 071$	13.42. 2.057	$+2.8853$	-0.0507	-0.0346
147	85 Ursæ Majoris........ η	$2 \cdot 0$	$90 \cdot 08$. 82.09	3	39	12.347	$12 \cdot 368$	13.43.12.361	$+2 \cdot 3824$	-0:0104	-0.0115
14^{8}	8 Boötis................. η	2.9	$89 \cdot 34$	81.1I	16	50	$26 \cdot 804$	$26 \cdot 797$	I3.49.26.804	$+2.8615$	-0.0006	-0.0049
149	93 Virginis τ	4.4	90.14	$82 \cdot 32$	10	24	$2 \cdot 851$	$2 \cdot 845$	I3.56. 2.85 I	$+3.0490$	$+0.0065$	-0.0005
150	94 Virginis	$6 \cdot 8$	89.48	80.68	6	13	28.225	28.244	I4. 0.28 .231	+3.1712	$+0.0115$	-0.0032
151	II Draconis. \qquad $" \quad \text { S.P. }$ \qquad	$3 \cdot 6$	$\begin{aligned} & 88 \cdot 0 \mathrm{I} \\ & 90 \cdot 69 \end{aligned}$	$83 \cdot 27$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	34	$\begin{aligned} & 24 \cdot 658 \\ & 24 \cdot 776 \end{aligned}$	$24 \cdot 648$	I4. I. 24.673	+ I.6303	$+0.0048$	-0.0092
152	98 Virginisк	4*3	$88 \cdot 35$	$83 \cdot 12$	7	19	I. 606	1.631	14. 7. 1-617	$+3 \cdot 1935$	+0.0123	-0.0004
153	I6 Boötis................ α	$0 \cdot 0$	89.53	$82 \cdot 30$	50	141	$38 \cdot 629$	$38 \cdot 618$	14. 10. 38.629	$+2.8132$	+0.0004	-0.0799
154	22 Boötisf f	5.4	$88 \cdot 68$	82.41	6	26	20.338	20.354	14. 21. 20. 347	+ 2.7953	+0.0009	-0:0057
155	25 Boötis ρ	3.6	$88 \cdot 81$	82.94	7	29	5.329	5•338	14.27. 5. 334	+ $2 \cdot 5944$	-0.0016	-0.0085
156	36 Boötis................. ε^{2}	3*	89.59	$82 \cdot 20$	21	55	10.955	10.954	14.40.10.955	$+2.6239$	0.0000	-0.0043
157	9 Libræ \qquad	3.0	$89 \cdot 27$	$8 \mathrm{I} \cdot 3 \mathrm{I}$	5	25	47.56I	47.550	14.44.47.556	$+3.3181$	+0.0155	-0.0093
158	I_{5} Libræ................. ξ^{3}	$5: 8$	89.22	81.59	7	14	47.939	47.916	14.50.47.931	$+3.2481$	$+0.0130$	-0.0019
159	$\begin{gathered} 7 \text { Ursæ Minoris } \ldots \beta \\ ., \\ \text { S.P.... } \end{gathered}$	$2 \cdot 1$	89.21	8I•56	3	54	I-582	1-812	14.51. 1-789	-0.2237	$+0.1018$	-0.0077
160	42 Boätis................ β	$3 \cdot 6$	90.43	80.07	3	7	$48 \cdot 133$	$48 \cdot 141$	14.57.48.137	$+2.2636$	0.0000	-0.0048
161	43 Bos̈tis............. ... ψ	4.5	89.30	$8 \mathrm{I} \cdot 84$	12	20	43.937	$43 \cdot 884$	14.59.43.937	$+2 \cdot 5835$	$+0.0011$	-0.0145
162	24 Libræ................. 1^{1}	4*9	89.71	83.42	6	25	$57 \cdot 008$	$57 \cdot 034$	15. 5.57.021	$+3.4134$	+0.0171	-0.0037
163	${ }^{7}$ L Libræ................ β	$2 \cdot 7$	89.51	82.16	8	25	$5 \cdot 183$	5:214	15. II. 5.196	+ 3.2289	+0.0118	-0.0079
164	Groombridge $2283 \ldots$	$7^{1} 1$	90.24	$86 \cdot 81$	53	3	$50 \cdot 203$	$49^{\circ} 534$	15.12.49.923	-21.2694	$+7 \cdot 3060$	
	" S.P. ...	7				3	$49 \cdot 427$	49534	15.12.49 923	-21-2694	+73060	

134, 135. The magnitude of each star in Strave's Mensurce Mficrometrica is $3^{\circ} 0$.
139. The magnitude given in the Uranometria Nova Oxoniensis is 3.5 .
140. The magnitude given is taken from Strave's Monsura Micrometrica.

[^3]| No. | Star's Namo. | Mag. | Mean Date. $1800+$ | | No. of Observations. | | Seconds of Mean R.A. $1890^{\circ} 0$ deduced from | | Adopteá Mean R.A.$1890 \cdot 0 .$ | Annual Precession.$1890 \cdot 0$ | Secular Variation.$1890 \cdot 0$ | Annual
 Proper Motion. $1890 \circ .$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{aligned} & 1887 \text { to } \\ & \text { I891. } \end{aligned}$ | 10-Year Catalogue. | $\begin{gathered} 1887 \text { to } \\ 1891 . \end{gathered}$ | 10-Year Catalogue. | $\begin{aligned} & 1887 \text { to } \\ & \text { 189I. } \end{aligned}$ | Io-Ycar Catalogue. | | | | |
| | | | | | | | 8 | צ | h m s | 8 | 8 | 8 |
| 165 | 30 Libre0 0^{2} | $6 \cdot 3^{*}$ | 90.19 | 83.04 | 5 | 14 | $53 \cdot 603$ | $53 \cdot 618$ | 15.16. 53.610 | + 3.3388 | $+0.0142$ | -0.0025 |
| 166 | 32 Librx................. ${ }^{4}$ | $6 \cdot 2$ | $89 \cdot 04$ | $82 \cdot 71$ | 10 | 17 | 3.134 | 3.137 | 15. 22. 3'134 | + 3.3748 | +0.0148 | -0.0010 |
| 167 | 5 Coronxa | 2.4 | 89•73 | 82.19 | 41 | 59 | 1*797 | I•799 | 15. 30. 1•797 | + 2.5300 | +0.0024 | $+0.0085$ |
| 168 | 24 Serpentisa | $2 \cdot 7$ | 89.66 | $82 \cdot 75$ | 16 | 34 | 50.965 | 50.929 | I5.38. 50.965 | +2.9429 | +0.0062 | +0.0079 |
| 169 | 37 Scrpentis ε | $3 \cdot 7$ | $89 \cdot 31$ | 82.94 | I5 | 31 | 19.929 | 19.906 | 15.45.19.929 | +2.9789 | $+0.0066$ | $+0.0068$ |
| 170 | 16 Ursæ Minoris\% ${ }^{\text {\% }}$ \% S.P. ... | $4 \cdot 5$ | $\begin{aligned} & 89 \cdot 22 \\ & 88 \cdot 78 \end{aligned}$ | $82 \cdot 82$ | 4 4 | 16 | $59 \cdot 665$ $59 \cdot 942$ | $59 \cdot 633$ | I5.47. $59 \cdot 747$ | -2.2627 | +0.2027 | $+0.003$ |
| 171 | 4I Serpentis γ | $4^{\circ} 0$ | $89 \cdot 13$ | - 82.00 | 15 | 31 | $22 \cdot 321$ | 22.288 | 15.51. 22.321 | + $2 \cdot 7474$ | $+0.0043$ | +0.0194 |
| 172 | 8 Scorpii β^{1} | $2 \cdot 0$ | $89 \cdot 95$ | $83 \cdot 37$ | 12 | 25 | $2 \cdot 346$ | 2.412 | 15. 59. 2.346 | $+3.4816$ | +0.0142 | -0.0026 |
| 173 | I Ophiuchi δ | $2 \cdot 8$ | 89.08 | $82 \cdot 10$ | 19 | 25 | 34•789 | 34.798 | 16. 8. $34 \cdot 789$ | $+3 \cdot 1429$ | +0.0081 | -0.0049 |
| 174 | 20 Herculis γ | $3 \cdot 8$ | $89 \cdot 10$ | 82.41 | 18 | 39 | 4.007 | 4.020 | 16. 17. 4^{0007} | $+2 \cdot 648 \mathrm{I}$ | +0.0039 | -0.0049 |
| 175 | 14 Draconis................ η | $2 \cdot 8$ | 90.3I | $82 \cdot 31$ | I | 30 | 29.920 | $30 \cdot 080$ | 16. 22. 30.070 | $+0.8050$ | $+0.0187$ | $+0.006$ |
| 176 | 2I Scorpii $\boldsymbol{\alpha}$ | I'I | $89 \cdot 69$ | 8I.84 | II | 28 | $39 \cdot 722$ | -39•707 | 16. 22. $39 \cdot 722$ | $+3.6715$ | +0.0150 | -0.0022 |
| 177 | Io Ophiuchi λ | $4^{\circ} \mathrm{O}$ | $89 \cdot 36$ | $83 \cdot 38$ | 9 | 17 | 21.868 | $21 \cdot 890$ | 16. $25.2 \mathrm{I} \cdot 875$ | $+3.0249$ | +0.0063 | -0.0227 |
| 178 | 13 Ophiuchi ζ | 2.8 | 89.43 | 81.97 | 12 | 30 | $6 \cdot 053$ | $6 \cdot 046$ | 16.31. 6.053 | + 3.2984 | $+0.0087$ | -0.0007 |
| 179 | 40 Herculisら | 3.1 | $89 \cdot 35$ | $80 \cdot 87$ | 17 | 48 | $8 \cdot 325$ | 8.349 | 16. $37.8 \cdot 325$ | + $2 \cdot 2971$ | +0.0033 | -0.0356 |
| 180 | 27 Ophiuchiek | 3.4 | $88 \cdot 54$ | 82.26 | II | 47 | $27 \cdot 654$ | $27 \cdot 641$ | 16. 52. $27 \cdot 654$ | + 2.8573 | +0.0044 | -0.0212 |
| 181 | 58 Herculis ε | 4*0 | $89 \cdot 31$ | $82 \cdot 33$ | 8 | 32 | 4*797 | 4.829 | 16. $56.4 \cdot 813$ | $+2 \cdot 2975$ | +0.0032 | -0.0047 |
| 182 | 22 Ursæ Minoris \qquad S.P. ... | $4 \cdot 5$ | $\begin{aligned} & 87.94 \\ & 91.03 \end{aligned}$ | 83.46 | $\begin{aligned} & 3 \\ & 2 \end{aligned}$ | 13 | $\begin{aligned} & 14.900 \\ & \text { I5. } 639 \end{aligned}$ | 15.207 | 16. $57.15 \cdot 200$ | -6.3448 | +0.3092 | +0.0090 |
| 183 | 35 Ophiuc i η | 2.6 | $89 \cdot 22$ | $82 \cdot 34$ | 16 | 25 | 4-097 | 4.125 | 17. 4. 4-097 | $+3.4344$ | $+0.0073$ | +0.0003 |
| 184 | 64 Herculisa | Var. | 89.42 | $82 \cdot 48$ | 20 | 36 | $37 \cdot 864$ | $37 \cdot 859$ | 17. 9. $37 \cdot 864$ | + $2 \cdot 7347$ | $+0.0035$ | -0.0019 |
| 185 | 42 Ophiuchi θ | 3.4 | 89.16 | $80 \cdot 73$ | 8 | 22 | $15 \cdot 142$ | $15 \cdot 213$ | 17. 15. 15.172 | + 3.6809 | $+0.0080$ | -0.0024 |
| 186 | 49 Ophiuchi | 4.4 | $89 \cdot 60$ | $82 \cdot 60$ | 18 | 32 | 3.364 | 3.361 | 17. 21. 3.364 | + $2 \cdot 9749$ | +0.0038 | -0.0017 |
| 187 | $\begin{gathered} 23 \text { Draconis } \boldsymbol{\beta} \\ \text { S.P......... } \end{gathered}$ | $3 \cdot 0$ | $\begin{aligned} & 88 \cdot 53 \\ & 87 \cdot 96 \end{aligned}$ | $82 \cdot 73$ | 8 | 26 | $\begin{aligned} & 56 \cdot 806 \\ & 56 \cdot 708 \end{aligned}$ | $56 \cdot 787$ | 17. 27. $56 \cdot 792$ | + I•3545 | $+0.0051$ | -0.0020 |
| 188 | 55 Ophiuchi α | $2 \cdot 2$ | $89 \cdot 37$ | 82.96 | 32 | 77 | $49 \cdot 662$ | 49.661 | 17. 29.49.662 | + $2 \cdot 7753$ | +0.0029 | +0.0065 |
| 189 | 60 Ophiuchi β | $2 \cdot 9$ | $89 \cdot 64$ | $82 \cdot 88$ | 19 | 59 | 2.268 | 2.270 | 17. 38. 2. 268 | + 2.9651 | +0.0030 | -0.0041 |
| 190 | 86 Herculis.............. μ | 3.5 | $89 \cdot 6 \mathrm{I}$ | $82 \cdot 88$ | 15 | 61 | 9. 165 | 9.156 | 17. 42. 9.165 | + 2.3702 | +0.0025 | -0.0244 |
| 191 | 89 Herculis | $5 \cdot 6$ | 88:93 | $82 \cdot 07$ | 9 | 19 | $58 \cdot 889$ | 58.931 | 17. 50. 58.904 | + 2.4190 | $+0.0024$ | $+0.0003$ |
| 192 | 33 Draconis.............. γ | 2.4 | $90 \cdot 69$ | 8I•99 | 12 | 48 | 3.039 | 3.090 | 17. 54. 3.039 | + I•3023 | $+0.0031$ | -0.0018 |
| 193 | 72 Ophiuchi | 3.9 | $89 \cdot 17$ | $82 \cdot 30$ | 36 | 85 | 8.047 | $8 \cdot 042$ | I8. 2. $8 \cdot 047$ | + $2 \cdot 8476$ | +0.0019 | -0.0056 |
| 194 | 13 Sagittarii μ | $4^{\circ} \mathrm{I}$ | $90 \cdot 51$ | 82.09 | 7 | 23 | II.051 | $11 \cdot 052$ | 18.7.71.051 | + 3.5878 | +0.0009 | -0.0014 |
| 195 | 33 Ursæ Minoris ${ }^{\text {o }}$ | $4 \cdot 3$ | 88.98 | $82 \cdot 35$ | 59 | 198 | 47-598 | 47•332 | 18. 7. $47 \cdot 5 \bigcirc 5$ | -19.4956 | -0.2230 | $+0.0251$ |
| | S.P.... | 43 | 90.03 | 82 | 30 | 198 | | 47332 | 18. 7. 47 5nj | -19 4956 | -02230 | $+0.025$ |
| 196 | ;8 Serpentis η | $3 \cdot 4$ | 89.47 | $83 \cdot 55$ | 34 | 49 | $37 \cdot 022$ | $37 \cdot 028$ | 18. 15.37-022 | $+3.1406$ | $+0.0009$ | -0.0400 |

172. The magnitude given is taken from Struve's Mensura Micrometrica.
173. The magnitude given in the Uranometria Nova Oxoniensis is 3.6
174. The magnitude given in the Uranometria Nova Oxoniensis is $2 \cdot 6$.

Mean Date. $1800+$		No. of Observations.		Seconds of Mean N.P.D. $1890^{\circ} 0$ deduced from		Adopted Mean N.P.D.$\text { I } 890 \cdot 0 .$	Annual Precession.$1890 \cdot 0 .$	Secular Variation.$\text { I } 890^{\circ} 0 .$	Annual Proper Motion. 1890%.	Star's Name.	No.
$\begin{aligned} & 1887 \text { to } \\ & 1891 . \end{aligned}$	10-Year Catalogue.	$\begin{gathered} 1887 \text { to } \\ 1891 . \end{gathered}$	10-Year Catalogize.	$\begin{gathered} 1887 \text { to } \\ 1891 . \end{gathered}$	10-Year Catalogue.						
				"	"	- "	"	"	"		
$90 \cdot 08$	$83 \cdot 74$	5	21	$28 \cdot 2+$	27.32	104. $+4 \cdot 27 \cdot 78$	+13.098	-0.373	-0.013	30 Librx................0. ${ }^{2}$	165
89.41	82.74	9	22	$57 \cdot 05$	$57 \cdot 38$	106. 19. $57 \cdot 18$	+12.753	-0.384	+0.046	32 Libra................5 5^{1}	166
$89 \cdot 50$	82•16	38	71	53.05	$53 \cdot 79$	62. $54.53 \cdot 05$	+12.206	-0.298	+0.034	; Согопæa	167
$90 \cdot 35$	81.96	35	29	$40 \cdot 63$	$40 \cdot 54$	83. 13. 40.63	+11.585	-0.355	- 0.0.0 6	24 Serpentisa	168
$89 \cdot 56$	$83 \cdot 52$	22	25	$26 \cdot 79$	$26 \cdot 71$	85. 11. $25 \cdot 79$	+11. 17	-0.366	- 0.059	37 SerpentisE	169
$89 \cdot 46$	$82 \cdot 86$	12	28	$2 \cdot 60$	$2 \cdot 60$				+0.004	16 Ursex Minoris\%	170
$89 \cdot 01$	82.86	7	28	2.33	2.60	11. 52. 2. 50	$+10.923$	+0.275	$+0.004$	S.P....	
89.07	8I-68	15	14	$44^{\cdot 2} 4$	+4.79	73. 58. $44^{\circ} 24$	+10.673	-0.3+3	+ 1.286	41 Serpentis γ	171
90:33	83.42	15	25	$13 \cdot 64$	13.88	109. 30. $13 \cdot 64$	+10.099	- 0.44^{2}	+0.027	8 Scorpii β^{\prime}	172
$88 \cdot 77$	$8+.00$	24	37	$38 \cdot 49$	$38 \cdot 26$	93. $24.38 \cdot 49$	$+9.370$	-0.409	+0.137	1 Ophiuchi δ	173
$88 \cdot 49$	8I.68	12	41	17:58	$17 \cdot 37$	70. $35.17 \cdot 58$	$+8 \cdot 706$	-0.351	-0.048	20 Herculis.............. γ	174
88.36	81•62	3	45	12.29	12•31	28. 14. $12 \cdot 25$	$+8 \cdot 276$	-0.110	- 0.050	14 Draconis............. η	175
$90 \cdot 88$		2	45	II•78	12.31	28. 14. $12 \cdot 25$	+8276	-0.110	- 0.050	" S.P.	
$90 \cdot 19$	81.79	9	32	15.09	14.14	116. $11.14{ }^{\circ} 6$	$+8.263$	-0.491	$+0.028$	21 Scorpii α	176
$89 \cdot 39$	$83 \cdot 58$	10	21	$29 \cdot 18$	29.63	87. 46. $29 \cdot 18$	$+8 \cdot 0.17$	-0.407	+ 0.065	10 Ophiuchi λ	177
$89 \cdot 45$	82.82	23	23	37•55	$37 \cdot 66$	100. 20. $37 \cdot 55$	+ 7.585	-0.448	-0.035	13 Ophiuchi\%	178
$89 \cdot 27$	81.33	16	56	53•10	$51 \cdot 36$	58. II. 52.10	+ 7.092	-0.316	-0.410	40 Herculis\%	179
$89 \cdot 21$	$83 \cdot 62$	${ }^{2}+$	$4+$	12.98	13.23	82. $27.12 \cdot 9^{8}$	+ 5.825	- 0.401	-0.015	27 Ophiuchik	180
$88 \cdot 56$	80.91	11	38	$40 \cdot 44$	40-58	59. $54 \cdot 40 \cdot 44$	+5.52I	-0.324	-0.032	58 Herculis ε	181
$89 \cdot 32$	$82 \cdot 17$	19	21	57.53	$57 \cdot 99$	7. \% $^{6} \cdot 57 \cdot 42$	+ 5.423	+ 0.89+	$+0.003$	22 Ursx Minoris ε	182
$89 \cdot 40$		6		57.05	57	7.46. 57 -	+ 5	+ 0.89	+ 0.003	" S.P....	
$89 \cdot 65$	$82 \cdot 84$	35	24	17*34	17.40	105. $35.17 \cdot 34$	$+4 \cdot 8+5$	-0.488	-0.097	35 Ophiuchi η	183
$89 \cdot 50$	$80 \cdot 90$	29	38	I. 86	$2 \cdot 10$	75.29. 1.86	+ 4.371	-0.391	-0.030	6+ Herculisa ${ }^{1}$	184
$89 \cdot 30$	81-59	13	${ }^{2} 4$	2I.05	$20 \cdot 62$	114.53.21.05	$+3 \cdot 891$	-0.528	+0.035	42 Ophiuchi θ	185
$89 \cdot 36$	$82 \cdot$ So	35	26	$48 \cdot 63$	$48 \cdot 89$	85. $45.48 \cdot 63$	+ 3.392	-0.429	-0.015	49 Ophiuchi σ	186
$88 \cdot+7$	$82 \cdot 31$	8		1.39						23 Draconis β	187
$87 \cdot 96$	$82 \cdot 31$	I	25		$1 \cdot 17$	37. 37.1 I 30	+ $2 \cdot 796$	-0.197	-0.004	S.P.	
$89 \cdot 39$	$82 \cdot 27$	65	79	34-10	$3+* 40$	77. 21. $34^{\prime} 10$	$+2.633$	-0.402	+0.217	55 Ophiuchia	188
89.86	83.55	42	45	$10 \cdot 37$	10.89	85. 23. 10.37	+ 1.918	-0.431	-0.167	60 Ophiuchi β	189
$89 \cdot 13$	$82 \cdot 77$	21	49	52.58	$52 \cdot 63$	62. 12:52.58	+ I.559	-0.345	+0.745	86 Herculis.............. μ	190
$89 \cdot 21$	$82 \cdot 78$	5	$20-$	$55 \cdot 61$	$55 \cdot 84$	63. 55. $55 \cdot 73$	+ 0.789	-0.353	-0.009	89 Herculis	191
$90 \cdot 72$	81.95	13	46	52.68	$52 \cdot 49$	38. 29. $52 \cdot 68$	+0.521	-0.203	+0.028	33 Draconis............ γ	192
88.80	$83 \cdot 14$	27	37	$5 \cdot 00$	5•30	80. 27. 5-00	-0.188	-0.415	-0.089	72 Ophinchi	193
$90 \cdot 82$	82.29	II	19	13.59	13.53	III. 5. 13.59	-0.628	-0.523	-0.001	13 Sagittarii μ	194
$89 \cdot 32$	$8 \mathrm{I} \cdot 89$	171	589	17.92	18.46	3. 23. I8.05	- 0.681	$+2 \cdot 8+1$	-0.040	23 Ursx Minorisî	195
$89 \cdot 26$		6I	58	18.41	$13+6$	3. 23. $18{ }^{\text {a }}$	- 0.681	$+28+1$	- 0.0qo	", S.P...	
$89^{\circ} 41$	$84 \cdot 53$	30	38	$36 \cdot 98$	$36 \cdot 77$	92. $55 \cdot 36 \cdot 98$	- I•366	-0.456	+ 0.677	58 Serpentis ${ }^{\prime}$	196

-184. The limits of magnitude are 3.1 and 3.9 ; the period irregular.
185. The magnitude given in the Uranometria Nora Oxoniensis is $2 \cdot 8$.

No.	Star's Name.	Mag.	Mean Date. $1800+$		No of Ohservations.		Seconds of Mean R.A. $1890^{\circ} 0$ deduced from		Adopted Mean R.A. 1890.0.	Annual Precession. $1890^{\circ} 0$.	Secular Variation.$1890 \cdot 0$	Annual Proper Mation. 1890.0.
			1887 to 1891.	10-Year Catalogue.	$\begin{aligned} & \text { 1887 to } \\ & \text { I891. } \end{aligned}$	io-Year Catalogue.	$\begin{gathered} 1887 \text { to } \\ \text { 1891. } \end{gathered}$	10-Year Catalogue				
							5	8	h m s	s	s	8
197	22 Sagittarii	$3 \cdot 1$	89.80	$82 \cdot 56$	I I	37	10.867	10.893	18. 21.10 .867	+ 3.7070	-0.0013	-0.0052
198	3 Lyrea	$0 \cdot 2$	$89 \cdot 39$	82.23	75	190	12.821	12.808	18.33. 12.82 I	+ 2.013	$+0.0016$	+0.0173
199	2 Aquilx	4.8	$89 \cdot 4$	83.07	13	78	14.994	$15 \cdot 020$	18. 36.14 .994	+ 3.2853	-0.0010	-0.0004
200	Io Lyræ β^{1}	Var.	$90 \cdot 19$	$8 \mathrm{I} \cdot 65$	12	26	1-107	1-092	18.46. I'107	$+2 \cdot 2142$	+0.0015	-0.0007
$20[$	- 3 Aquilæ ε	$4^{\text {¹ }}$	$89 \cdot 13$	82.88	28	60	$37 \cdot 761$	$37 \cdot 756$	18. $54 \cdot 37 \cdot 761$	+ 2.7264	+0.0005	-0.0049
202	17 Aquilx ζ	3.1	$89 \cdot 75$	$82 \cdot 95$	28	54	21.23I	21.219	19. O. 21.23 I	+ $2 \cdot 7578$	$+0.0003$	-0.0026
203	42 Sagittarii ψ	5%	89.81	$82 \cdot 62$	9	26	47•708	$47 \cdot 692$	19.8. $47 \cdot 701$	$+3.6801$	-0.0078	$+0.000 .4$
204	25 Aquilæ ω	5.1	$89 \cdot 28$	82.82	24	4°	39.157	39.158	19. I2. 39.157	+ $2 \cdot 8164$	-0.0003	-0.0014
205	30 Aquilæ δ	$3 \cdot 5$	89.58	$82 \cdot 55$	33	47	57.101	$57 \cdot 080$	19. 19. $57 \cdot 101$	+ 3.0089	-0.0017	$+0.0153$
206	6 Vulpeculæ α	$4 \cdot 7$	$89 \cdot 40$	$82 \cdot 60$	19	58	$7 \cdot 675$	$7 \cdot 657$	19. $24 . \quad 7.675$	+ 2.5054	$+0.0009$	-0.0108
207	38 Aquilæ μ	$4 \cdot 7$	$89 \cdot 81$	$82 \cdot 31$	13	34	42.919	$42 \cdot 901$	19. 28. 42.919	+2.9173	-0.0013	$+0.0129$
208	52 Sagittarii h^{2}	$4 \cdot 6$	$90 \cdot 30$	82.21	10	21	$0 \cdot 788$	$0 \cdot 761$	19. 30. 0.788	+ 3.6518	-0.0103	$+0.0016$
209	Urse Minoris入	$6 \cdot 5$	89•39	$82 \cdot 21$	65	174	$35 \cdot 318$	$34 \cdot 038$	19. $33.34 * 968$	-6+9749	-28.4562	-0.0523
	" S.P. ...	65	$89 \cdot 79$	82.21	18	174	$33 \cdot 705$	$3+035$	19. 33. 34.968	$-6+9749$	-28 +562	- 0-0523
210	54 Sagittariie ${ }^{1}$	$5 \cdot 5^{*}$	$90 \cdot 73$	$81 \cdot 48$	11	19	25.239	25.274	19. $34.25 \cdot 239$	$+3.4365$	-0.0074	$+0.0026$
2 II	50 Aquilæ γ	$2 \cdot 8$	89.97	81.40	20	46	1.764	1.767	19. $41.1 \cdot 764$	+2.8517	-0.0010	-0.0005
212	53 Aqnilæ α	1.0	$89 \cdot 62$	81.77	41	85	24.937	$2+.9+1$	19. $45.24 \cdot 937$	+ 2.8919	-0.0014	+0.035 1
213	60 Aquilæ β	$4^{\circ} 0$	88.88	$83 \cdot 29$	19	35	54*54+	54.530	19. 49. $54 \cdot 544$	+ 2.9450	-0.0020	$+0.0007$
214	62 Sagittariic	$4 \cdot 7$	89.41	81.06	10	23	$53 \cdot 587$	$53 \cdot 616$	19. $55.53 \cdot 587$	+ 3.6947	-0.0147	+0.0004
215	65 Aquilx θ	3.4	$89 \cdot 66$	$8 \mathrm{I} \cdot 87$	30	57	37•713	$37^{\prime} 707$	20. 5. $37 \cdot 713$	$+3.0954$	-0.0042	-0.0001
216	6 Capricorni α^{2}	$3 \cdot 8$	$90 \cdot 02$	$80 \cdot 87$	19	38	57-066	$57 \cdot 060$	20. 11. $57 \cdot 066$	+ 3.3289	-0.0085	+0.0022
217	9 Capricorni β	3.4	90.05	$82 \cdot 73$	9	31	$49^{\circ} 797$	$49 \cdot 837$.	20. 14. $49 \cdot 816$	$+3.373 \mathrm{I}$	-0.0096	+0.0008
218	II Capricorni ρ	$5 \cdot 0$	$89 \cdot 32$	$82 \cdot 10$	12	28	$35 \cdot 164$	35.129	20. 22. $35 \cdot 164$	+ 3.4293	-0.0114	-0.0028
219	2 Delphini.............. ε	$4^{\circ} \mathrm{I}$	89.99	82.05	25	33	$57 \cdot 428$	$57 \cdot 431$	20. $27.57 \cdot 428$	+ 2.8663	-0.0113	-0.0006
220	Bradley 2701	7.5*	$90^{\circ} 04$	$83^{\circ} 32^{\circ}$	59		$44 \cdot 984$		20. 33. $45 \cdot 054$	$-3 \cdot 5841$	-0.3949	$+0.0183$
	" S.P. ...	75	$90^{\circ} \mathrm{II}$	$83 \cdot 32$	19	4	$45 \cdot 276$	$44^{\circ} 973$	20. $33 \cdot 45 \cdot 054$	$-3 \cdot 58+1$	-0.3949	+ 0.0183
221	9 Delphini α	4.0	$89 \cdot 47$	81.98	9	32	$3 \mathrm{I} \cdot 687$	31.699	20. $34 \cdot 31 \cdot 692$	+ $2 \cdot 7824$	-0.0001	$+0.0031$
222	50 Cygnia	1.5	$89 \cdot 55$	81.90	5	26	$40 \cdot 895$	+0.845	20. $37.40 \cdot 866$	+ 2.0437	+0.0022	-0.0003
223	2 Aqnarii ε	$3 \cdot 8$	89.89	82.08	20	24	$43 \cdot 249$	$43 \cdot 2 ; 8$	20. 4 I. $43 \cdot 249$	+ 3.2501	-0.0084	-0.0002
224	6 Aquarii μ	$4 \cdot 8$	89.87	$82 \cdot 44$	18	26	$43 \cdot 210$	$43 \cdot 197$	20. $46.43 \cdot 210$	$+3 \cdot 2377$	-0.0083	$+0.0008$
225	32 Vnlpeculæ	5.1	89.50	82.94	20	19	$52 \cdot 295$	52.289	20. 49. 52.295	+ $2 \cdot 5560$	$+0.0026$	-0.0016
226	23 Capricorni θ	4*3	$89 \cdot 14$	82.95	12	34	$45 \cdot 803$	$45 \cdot 772$	20. $59.45 \cdot 803$	+ 3.3739	-0.0128	$+0.0040$
227	61 Cygni (ist Star)......	5.0*	$90 \cdot 72$	83.63	3	14	57.970	$57 \cdot 918$	21. I. 57×934	+ 2.3348	$+0.0044$	+0.3444
228	64 Cygni ζ	$3 \cdot 5$	$89 \cdot 82$	82.41	27	59	$15 \cdot 265$	$15 \cdot 260$	21. 8. 15:265	+ 2.5515	$+0.0039$	-0.0015
229	8 Equuleia	$4^{1} 1$	89.40	$82 \cdot 74$	13	15	19.480	19.478	2J. 10. 19.480	+ 2.9969	-0.0028	+0.002I
230	5 Cepheia	6	89.21		10		57.172				-0.0072	+0.02II
	„ S.P.	6	$88 \cdot 71$	$81 \cdot 90$	8	39	57-131	$57 \cdot 19$	21. 15. $57 \cdot 154$	$+1.413$	-0.0072	+0.0211

[^4]| Mean Date. $1800+$ | | No. of Observations. | | Seconds of Mcan N.P.D. 1890° deduced from | | Adopted Mean N.P.D.
 1890.0. | Annual Precession.
 $1890^{\circ} 0$. | Secular Variation.$1890^{\circ} 0 .$ | Annual
 Proper
 Motion.
 $1890^{\circ} 0$. | Star's Name. | No. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 1887 \text { to } \\ 1891 . \end{gathered}$ | 10-Year Catalogue. | $\begin{gathered} 1887 \text { to } \\ \text { 1891. } \end{gathered}$ | 10-Year Catalogue. | $\begin{aligned} & 1887 \text { to } \\ & 1891 . \end{aligned}$ | 10-Year Catalogue. | | | | | | |
| | | | | " | " | - 1 | " | " | " | | |
| $89 \cdot 63$ | 82.44 | 9 | 35 | 54.96 | 54.77 | 115. 28. 54.86 | - I.851 | -0.538 | $+0.198$ | 22 Sagittarii入 | 197 |
| 89.22 | 81.30 | 76 | 217 | $6 \cdot 44$ | $6 \cdot 40$ | 51. 19. 6.44 | - 2.897 | -0.289 | -0.295 | 3 Lyrwa | 198 |
| $89 \cdot 72$ | $84 \cdot 40$ | 27 | 80 | $26 \cdot 00$ | $25 \cdot 85$ | 99. 9. $26 \cdot 00$ | - 3.158 | -0.472 | -0.005 | 2 Aquilæ. | 199 |
| 90. 35 | 80.89 | 11 | 33 | $53 \cdot 13$ | 52.71 | 56. $45 \cdot 53 \cdot 13$ | -4.000 | -0.315 | -0.017 | 10 Lyræ β^{1} | 200 |
| $89 \cdot 60$ | $8 \mathrm{I} \cdot 81$ | 24 | 58 | 51.02 | $50 \cdot 49$ | 75. $4.51 \cdot 02$ | -4.735 | -0.385 | +0.080 | 13 Aquilæ ε | 201 |
| $89 \cdot 62$ | 82.79 | 4^{8} | 73 | $58 \cdot 76$ | 59•10 | 76. 17. $58 \cdot 76$ | -5.221 | -0.386 | +0.089 | 17 Aquilæ ζ | 202 |
| $89^{\circ} 71$ | $83 \cdot 00$ | 9 | 22 | 44*75 | 44.59 | 115. 26. $44 \cdot 69$ | - 5.930 | -0.511 | +0.029 | 42 Sagittarii ψ | 203 |
| $89 \cdot 24$ | 83.01 | 27 | 25 | 9.36 | $9 \cdot 57$ | 78. $36.9 \cdot 36$ | -6.25I | -0.388 | -0.025 | 25 Aquilæ ω | 204 |
| $89 \cdot 32$ | $83 \cdot 3 \mathrm{I}$ | 34 | 36 | 14.87 | $14 \cdot 64$ | 87. 6, 14.87 | -6.855 | -0.410 | -0.091 | 30 Aquilæ δ | 205 |
| $89 \cdot 03$ | $82 \cdot 13$ | 28 | 40 | $27 \cdot 20$ | $27 \cdot 23$ | 65.33. $27 \cdot 20$ | - 7.198 | -0.338 | $+0.102$ | 6 Vulpeculæ...........a | 206 |
| $89 \cdot 37$ | $83 \cdot 38$ | 24 | 22 | $15 \cdot 05$ | 15•33 | 82. 51. 15.05 | -7.570 | -0.391 | +0.133 | 38 Aquilæ μ | 207 |
| 90.88 | $8 \mathrm{I} \cdot 62$ | 10 | 20 | $32 \cdot 87$ | $33^{\circ} 34$ | 115. 7. $32 \cdot 87$ | - 7.675 | -0.489 | +0.010 | 52 Sagittarii ${ }^{2}$ | 208 |
| 89.29 | 82•34 | 145 | 4^{89} | $59^{\circ} \mathrm{O}$ | 59*37 | I. I. 59×19 | - 7.963 | $+8 \cdot 702$ | +0.005 | Ursæ Minoris λ | 209 |
| 89.27 | $82 \cdot 34$ | 82 | 48 | 59.51 | 59.3 | 1. 1. 5919 | - 796 | $+8.702$ | $+0.005$ | S.P.... | |
| $9 \mathrm{I} \cdot 04$ | $82 \cdot 37$ | II | 22 | $4 \mathrm{I} \cdot 92$ | 42.10 | 106. 32. $4 \mathrm{I} \cdot 92$ | -8.03I | -0.456 | $+0.039$ | 54 Sagittariie ${ }^{\text {2 }}$ | 210 |
| 89.91 | 81.52 | 10 | 24 | 16.31 | 16.42 | 79. 39. 16. 31 | -8.556 | -0.373 | -0.008 | 50 Aquilæ γ | 211 |
| 89.41 | 82.25 | 30 | 59 | 19.12 | 19.04 | 81. $25.19 \cdot 12$ | -8.903 | -0.375 | -0.384 | 53 Aquilæ α | 212 |
| 89.43 | 83.81 | 13 | 28 | 3. 32 | 3.08 | 83. 52. 3.32 | - 9.253 | -0.378 | $+0.473$ | 60 Aquilæ β | 213 |
| 89.45 | 80.67 | 8 | 12 | 55.18 | 54.81 | 118. $0,55 \cdot 08$ | - 90715 | -0.468 | -0.024 | 62 Sagittariic | 214 |
| 89.55 | $83 \cdot 18$ | 33 | 52 | $50 \cdot 35$ | $50 \cdot 20$ | 91. 8. $50 \cdot 35$ | -10.450 | -0.381 | -0.014 | 65 Aquilæ θ | 215 |
| $89 \cdot 48$ | $82 \cdot 28$ | 13 | 19 | $8 \cdot 04$ | $7 \cdot 41$ | 102. 53. 8.04 | -10.918 | -0.403 | -0.017 | 6 Capricorni α^{2} | 216 |
| $88 \cdot 76$ | 83.05 | 9 | 33 | $4 \mathrm{I} \cdot 43$ | $42 \cdot 45$ | 105. 7. $4 \mathrm{I} \cdot 9 \mathrm{I}$ | -II•129 | -0.405 | -0.022 | 9 Capricorni β | 217 |
| 89.57 | $82 \cdot 50$ | 6 | 23 | 37^{111} | $36 \cdot 79$ | 108. 10. 36.95 | -II.687 | -0.402 | $+0.007$ | If Capricorni ρ | 218 |
| 90.05 | 83.09 | 23 | 23 | 13.43 | 13.66 | 79. 4. 13.43 | -12.066 | -0.329 | $+0.022$ | 2 Delphini............... | 219 |
| $89 \cdot 97$ | $83 \cdot 76$ | 65 | 7 | $24 \cdot 06$ | 24*76 | 8. $56: 24.09$ | -12.468 | $+0.415$ | $0 \cdot 000$ | Bradley 2701 | 220 |
| 90.05 | 8 | 24 | 7 | $24^{\prime} 18$ | | 8. 5 . $24 \cdot 09$ | 12.468 | +0.415 | | S.P. . | |
| 88.43 | 81.68 | 5 | 25 | $32 \cdot 55$ | $33 \cdot 04$ | 74. 28. $32 \cdot 82$ | -12.520 | -0.312 | $+0.002$ | 9 Delphini..............a | 221 |
| 89.21 | $81 \cdot 85$ | 3 | 27 | $45 \cdot 03$ | $45 \cdot 65$ | 45. 6. $45 \cdot 54$ | -12.734 | -0.225 | -0.003 | 50 Cygni α | 222 |
| $90 \cdot 31$ | $83 \cdot 68$ | 13 | 26 | 53.49 | 53.30 | 99. 53. 53.49 | -13.006 | -0.356 | $+0.027$ | 2 Aqnarii | 223 |
| 89. 57 | 83.53 | 15 | 26 | $44 \cdot 44$ | $45 \cdot 08$ | 99. 23. 44.44 | -13.335 | -0.348 | $+0.031$ | 6 Aquarii μ | 224 |
| $89 \cdot 10$ | $83 \cdot 35$ | 17 | 27 | $37 \cdot 82$ | $38 \cdot 05$ | 62. 21. $37 \cdot 82$ | -13.540 | -0.270 | $+0.002$ | 32 Vulpentie | 225 |
| $88 \cdot 60$ | 82.59 | 12 | 22 | 10.98 | 10.97. | 107. 40. 10.98 | -14.165 | -0.343 | +0.054 | 23 Capricorni θ | 226 |
| 90.50 | $83 \cdot 65$ | 4 | 15 | 29.18 | 29.23 | 51. $47.29^{\circ} 21$ | -14.297 | -0.233 | - 3.230 | 61 Cygni (Ist Star)..... | 227 |
| 89.71 | 82.05 | 27 | 51 | $26 \cdot 58$ | $26 \cdot 84$ | 60. 13. $26 \cdot 58$ | -14.682 | -0.248 | $+0.066$ | 64 Cygni ζ | 228 |
| 89.29 | 83.11 | 9 | 18 | $23 \cdot 80$ | $24 \cdot 15$ | 85. 12. 23.93 | -14.804 | -0.289 | $+0.078$ | 8 Equulei α | 229 |
| 89.17 | 8I•81 | 16 | 77 | $49 \cdot 00$ | $49 * 92$ | 27. 52. 49×25 | -15.132 | -0.129 | -0.025 | 5 Cephei | 230 |
| 88.83 | | 8 | 7 | $49^{\circ} 96$ | | | | | | " S.P. | |

219. The magnitude given in the Uranometria Fora Oxoniensis is $3 \cdot 6$.
220. The magnitude given in the Uraumetria Nora Oroniensis is $3^{\prime} 1$.

Mean Date. $1800+$		No. of Observations.		Seconds of Mean N.P.D. 1890° deduced from		Adopted Mean N.P.D. $1890 \cdot 0$.	Annual Precession.$1890 \cdot 0 .$	Seeular Variation.$1890^{\circ} 0$	Annual Proper Motion. $1890 \cdot 0$	Star's Name.	No.
$\begin{aligned} & 1887 \text { to } \\ & 1891 . \end{aligned}$	10. Year Catalogue.	$\begin{aligned} & 1887 \text { to } \\ & 1891 . \end{aligned}$	10-Year Catalogue.	$\begin{gathered} 1887 \text { to } \\ 1891 . \end{gathered}$	10-Year Catalogue.						
				"	n	- 1	"	"	"		
$89 \cdot 56$	$81 \cdot 74$	15	19	10.07	$10 \cdot 11$	107. 18. 10.07	-15.141	-0.314	-0.013	32 Capricorni 4	231
$89 \cdot 92$	$86 \cdot 48$	28	7	9.19	9.47	3. $25 \cdot 9 \cdot 32$	-15.446	$+1 \cdot 048$		Groombridge $3548 \ldots$	232
90.16	86.48	6	7	$9 \cdot 94$	$9+7$	3. $25 \cdot 932$	-15 446	$+1048$		S.P.	
89.90	$83 \cdot 52$	9	36	17.74	17.51	96. 3. $17 \cdot 62$	- $15 \cdot 681$	-0.281	$+0.001$	22 Aquarii β	233
$88 \cdot 77$	82.07	6	74	19.51	20.10	19. $55.19 * 49$	-15.760	-0.065	+0.012	8 Cephei β^{2}	234
$89 \cdot 83$	84.02	15	38	$49 \cdot 94$	$50 \cdot 38$	98. 20. $49 \cdot 94$	-16.010	-0.274	$+0.022$	23 Aqnarii5	235
89.99	83.88	21	37	$45 \cdot 18$	$45 \cdot 21$	$80 \quad 37 \cdot 45 \cdot 18$	-16.366	-0.242	-0.011	8 Pegasi..................	236
88.95	$80 \cdot 68$	9	10	$34 \cdot 82$	$34 \cdot 26$	106. $37.34 \cdot 68$	-16.475	- 0.268	$+0.297$	49 Capricorni δ	237
89.45	83.31	14.	52	$31 \cdot 92$	$32 \cdot 26$	64. 35. $31 \cdot 92$	-16.821	-0.210	$+0.002$	16 Pegasi	238
$89 \cdot 37$	$83 \cdot 85$	24	34	$14^{\circ} 45$	$14 \cdot 29$	90. 51. 14.45	-17.373	-0.218.	-0.002	34 Aquariia	239
$89 \cdot 41$	81.26	13	33	$30 \cdot 56$	$31 \cdot 76$	65. 11. $30 \cdot 56$	$-17 \cdot 44^{8}$	- 0.192	-0.020	${ }^{2+}$ Pegasi	240
$89 \cdot 86$	82.08	22	33	$51 \cdot 44$	51.29	98. 19. $51 \cdot 44$	-17.829	-0.204	$+0.019$	43 Aquarii θ	241
90.12	$81 \cdot 80$	16	13	29*10	$29^{\circ} 25$	91. 56. 29'10	-18.023	- 0.191	-0.017	4^{8} Aquarii γ	242
$89 \cdot 94$	$85 \cdot 59$	36	9	$45^{\circ} 09$	$45 \cdot 51$	4. 26. $45 \cdot 26$	-18.248	+ 0.253	-0.044	Bradley 2993	243
$89^{\cdot 78}$		17	9	$45 \cdot 61$	45	4. $26.45 \cdot 2$	-18-4	+	- 014	S.P....	
$88 \cdot 94$	81.95	10	17	$26 \cdot 36$	$27 \cdot 12$	101. 14. $26 \cdot 36$	-18.349	- 0.180	+0.037	57 Aquarii	244
$89 \cdot 43$	$82^{\cdot 12}$	20	15	$3 \cdot 57$	3.56	90. 41. 3.57	-18.517	-0.165	+ 0.053	62 Aquarii7	245
$89 \cdot 67$	82.21	25	15	$34 \cdot 12$	$34 \cdot 52$	79. 44. $34 \cdot 12$	-18.72I	-0.149	$+0.018$	42 Pegasi................ \%	246
$89 \cdot 94$	$82 \cdot 51$	13	41	$44 \cdot 61$	45.30	65. 58. $44 \cdot 61$	-18.981	-0.128	$+0.042$	48 Pegasi................ μ	-247
$89 \cdot 54$	$82 \cdot 40$	14	42	53.96	$53 \cdot 62$	98. 9. $53 \cdot 96$	-19.042	-0.136	-0.040	73 Aquarii λ	24^{4}
$89 \cdot 97$	$82 \cdot 68$	7	29	$19^{\circ}+4$	19.07	120. 12. 19.25	-19.167	-0.135	+0.159	24 Piscis Australis......a	249
89.51	$83 \cdot 18$	14	30	11.47	11.83	75. 23. 11* 47	-19.354	-0.106	+0.030	54 Pegasi..................a	250
$89 \cdot 37$	83.08	14	44	7•73	$7 \cdot 62$	87. 19. $7 \cdot 73$	-19.606	-0.086	-0.017	6 Piseium γ	251
$89 \cdot 28$	$82 \cdot 53$	15	37	$47 \cdot 66$	$48 \cdot 00$	89. 20. $47 \cdot 66$	-19.768	-0.068	+ 0.102	8 Pisciumk	252
$89 \cdot 92$	$85 \cdot 24$	45	18	$57 \cdot 4^{2}$	58.07	3. 17. 57×46	-19.857	$+0.012$	-0.003	Bradley 3147	253
$89 \cdot 75$		35		$57 \cdot 50$		3. 17. 574	-19857	+0.012	-0.003	S.P...	
$89 \cdot 40$	83.42	14	27	$12 \cdot 04$	11.90	84. 58.12.04	-19.927	-0.042	$+0.443$	17 Piscium	254
89.42	82.41	9	68	$52 \cdot 63$	$53 \cdot 69$	12. $58.52 \cdot 80$	-19.933	-0.031	-0.135	35 Cephei................. γ	255
$88 \cdot 90$		15		52.95		12. 58. $52 \cdot 80$	-19933	-0.031	- 0.135	
$89 \cdot 70$	83.19	8	14	19.88	20.31	118.44. 20.02	-20.000	-0.026	+0.097	Ssulptoris δ	256
$90 \cdot 16$	$81 \cdot 88$	24	38	$44 \cdot 42$	$44 \cdot 83$	83. 44. $44{ }^{\prime}+2$	-20.046	-0.005	+0.108	28 Piscium ω	257
$89 \cdot 33$	$82 \cdot 76$	8	20	$55 \cdot 32$.54'43	107. 56. 54.98	-20.053	+0.004	-0.005	2 Ceti	258

250. The magnitude given in the Uranometria Nova Oxuniensis is 2.3 .
251. Authority for Proper Motion : Cape Catalogue, 1880.

[^0]: 59. The magnitude given in H. P. is 2.4 ; in the Cranometria Nra Oxoniensis 2.0 . The limits of magnitude are 2.2 and 2.7 . Anwers found a I6d. period, Schönfeld a slight variation but no period, Chandler and Sawyer no flactuation of light.
 60. Authority for Proper Motion: Cape Catalague 1880.
 61. The magnitude given in H.P. is $0^{\circ} 9$. The limits of magnitude are 1 and $1{ }^{\circ}+$; Argelander found period ig6l., Schönfeld thiaks periodieity questionable.
[^1]: 68. The limits of magnitude are 3.2 and $3.7-4.2$: the period $22 g^{\mathrm{d}} \cdot \mathrm{I}$. 72. The magnitude given in the Uranometria Nora Oxaniensis is 4.3 . 75. The magnitude given in the Uranumetria Nora Oxoniensis is $+2 \cdot 0$ in the notation of that work, which corresponds to $-1 \cdot 0$, i.e., 2 magnitudes brighter than a standard first magnitude star. The corrections applied to the R. A. and N. P. D. of a Canis Majoris for the effect of orbital motion to reduce the observations of $1887-189 \mathrm{I}$ to the epoch 1890 are $+0^{*} \cdot 007$ and - $0^{\circ} \cdot 009$ respectively, and from 1880 , the epoch of the Ten-Year Catalogue, to 1890 are $+0^{8} \cdot 166$ and - $0^{\prime \prime} \cdot 83$ respectively. These corrections are derived from Auwers' Elements (Astronemische Nuchriehten, Vol. 129).
 69. The limits of magnitude are 3.7 and $4^{\circ} 5$: the period Iod. $3^{\mathrm{h}} \cdot 4^{\mathrm{mm}} \cdot 5$.
[^2]: 85, 86. The magnitudes given in B. D. are 8.6 and $\mathrm{I}^{\cdot 7}$
 87. The corrections applied to the R. A. and N. P. D. of a Canis Minoris for the effect of orbital motion to reduce the observations of 1887 - 1891 to the epoch 189 c are $+0^{8} \cdot 009$ and $+0^{\prime \prime} \cdot 07$ respectively, and from 1880 the epoch of the Ten-Year Catalogue to 1890 are $+0{ }^{\circ} \cdot 099$ and $+0^{\prime \prime} \cdot 06$ respectively. The currections are derived from Auwers' Elements (Astronomische Nachrichten, Vol. 129).
 89. This star is designated ξ Navis in B. F.
 92. This star is designated ^ Navls in 13. F., and 15 Argus in the Nautical Almanac.

[^3]: I+3. The magnitude given in the Uranometria Note Oxuniensis is $I^{\circ} \mathrm{O}$.
 153. The magnitude given in the Uranametria Nova Oxoniensis is 0.3 .
 156. The magnitude given is takon from Struve's Mensure Micrometrica.

[^4]: 200. The limits of magnitude are 3.4 and 4.5 ; the period about $12^{\mathrm{d} \cdot 22^{\mathrm{h}} .}$
 201. The letter α was added in the B.A.C.
 202. The magnitude given in the Uranometria Nora Oramiensis is $5^{\circ} \mathrm{I}$.
 203. The magnitude given in tho Uranometria Aora Oxemiensis is $3 . \%$.
